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Motivation

Dynamic models are not always available in every situation where control is needed

Adverse event creating an abrupt change in the system dynamics

Chaotic systems without existing reliable dynamic models

Question: How can we optimally utilize additional knowledge to control a nonlinear
system without a dynamics model?

Onboard learning methods

Known physical laws

Observable behaviors like previous trajectories
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Existing Control Methods for Uncertain Systems

Robust Control:
Develop control action for worst case
unknown disturbances

Requires a dynamic model and worst-case
bounds on the potential disturbances

Performance can be sluggish when
disturbances bounds are too large

Inherently conservative

Prioritize safety

Adaptive Control:

Control method which adapts to
parametric uncertainty
Unlike robust control, no a priori
information on the bounds of the
uncertain parameters needed

Control law adapts to parametric
change

Fails if the parametric change is too
significant
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Control Pipeline

Active learning

Learn local dynamics with an arbitrarily
small error from test control inputs

Resilient Task Assignment

Determine what you can provably
achieve without knowing the true system
dynamics

Controller Synthesis

Synthesize a controller using gathered
knowledge without a dynamics model
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Overview

Resilient Task Assignment:
Determine the guaranteed set of
reachable states without knowledge of
the system dynamics

Solve for the Guaranteed Reachable Set
of an unknown system

A guaranteed underapproximation of
the true reachable set of the unknown
system

We solve for various underapproximations
of the true reachable set under different
assumptions and detail their advantages

Controller Synthesis:

Synthesize control action based on the
limited knowledge gained from active
learning and resilient task assignment

We consider two methods:

Utilize reachable sets to directly
perform system identification and learn
the model of our unknown system

Use a proxy system model derived
during resilient task assignment to
synthesize a controller for small time
intervals
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Guaranteed Reachability

It is impossible to determine the exact set
of reachable states without full knowledge
of the system dynamics

To determine what is provably possible,
we want to underapproximate such a set

Guaranteed Reachable Set

A set of states that are provably achievable for
a system within a given time frame
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Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Framework for Under-Approximating the GRS

Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

Simple geometric properties allow for real-time implementation

The reachable set of the proxy system will underapproximate the guaranteed reachable set

Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time



Formalized Problem Statement

We have an unknown nonlinear control-affine system of the form:

ẋ = f (x) + G (x)U , x(0) = x0
f (x) ∈ Rn and G (x) ∈ Rn×m

We assume knowledge of:

The initial state x0

The input set U = Bm(0; 1)

Local dynamics f (x0) and G (x0)

Learned within an arbitrarily small error from test control inputs

The maximum growth rate of dynamics given by Lipschitz bounds Lf and LG
Determined from known physical laws
Uncertainty quantification

Problem Statement
Determine or underapproximate the guaranteed reachable set
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Guaranteed Velocity Set

We are left with infinitely many candidate
systems consistent with our assumptions

Let us denote Dcon as the set of all f ,G
consistent with our assumptions

We introduce the following ODI:

ẋ ∈ Vx = f (x) + G (x)U , x(0) = x0

Guaranteed Velocity Set

The intersection of the set of all velocities
whose dynamics are consistent with our
assumptions:

VG
x = ∩(f ,G)∈Dcon

f (x) + G (x)U ⊂ Vx
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Derived Ball Underapproximation

Ball Underapproximation

Let U , Lf , and LG be defined as above. Let x ∈ Rn satisfy (Lf + LG )∥x∥ < ∥G †(x0)∥−1.
Define

V̄G
x = Bn(f (x0); ∥G †(x0)∥−1 − (Lf + LG )∥x∥) ∩ Im(G (x0)).

Then, V̄G
x ⊆ VG

x .



Derived Convex Underapproximation

Advanced Convex Underapproximation

Let U , Lf , and LG be defined as above. Let µ = 1 if rank(G (x0)) = m = n, µ =
√
2 if

rank(G (x0)) = min(m, n) and m ̸= n, µ = 1+
√
5

2 if rank(G (x0)) < min(m, n), and let x satisfy
(Lf + LG )∥x∥ ≤ ∥G †(x0)∥−1. If

¯̄VG
x = {f (x0) + kd | ∥d∥ = 1, d ∈ Im(R), 0 ≤ k ≤ K (d)}

s.t. K (d) =
∥G †(x0)∥−1 − (Lf + LG )∥x∥

∥G †(x0)d∥(∥G (x0)†∥−1 − LG∥x∥) + µ∥G (x0)†∥LG∥x∥
,

then ¯̄VG
x ⊆ VG

x .

Corollary

For invertible matrices G (x0), V̄G
x ⊆ ¯̄VG

x .



Visual Interpretation of GVS Underapproximations



Interpretation of Ball ODI as a Control System

Let RG(T , x0) be defined as the guaranteed reachable set of our unknown system.

We interpret the following ODI:

ẋ ∈ V̄G
x , x(0) = x0,

as a control system

The reachable set of such a control system contained in the guaranteed reachable set

Theorem

Let us consider the control system

ẋ = a+ g(∥x∥)ū, x(0) = x0,

on {x | ∥x∥ ≤ ∥G †(x0)∥/(Lf + LG )}, with a = f (x0), ū ∈ Bn(0; 1) ∩ Im(G (x0)) and where
g(s) = ∥G †(s0)∥−1 − (Lf + LG )s if s ≤ ∥G †(s0)∥−1/(LG + Lf ). If R(T , x0) is the reachable
set of the control system above, then R(T , x0) ⊆ RG(T , x0).
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Interpretation of the Polygon ODI as a Control System

We interpret the following ODI:

ẋ ∈ P(S(x)), x(0) = x0,

as a control system.

Theorem

Let s ∈ R and g(s) = ∥G (s0)
†∥−1 − (LG + Lf )s, α(s) = ∥G (s0)

†∥−1 − LG s,
β(s) = µ∥G (s0)

†∥LG s with µ as defined in Theorem 2. Let UΣV T be the singular value
decomposition of G (x0) where U = [η1, ..., ηn]. Let r = rank(G (x0)); we define Λ(s) ∈ Rn×m

such that diag(Λ(s)) = max{ g(s)
α(s)∥G(x0)†ηi∥+β(s)

, g(s), 0} and λij(s) = 0 elsewhere.

The reachable set of ẋ ∈ P(S(x)) equals the reachable set of the control system

ẋ = a+ UΛ(∥x∥)u, x(0) = x0,

on {x | ∥x∥ ≤ ∥G (x0)
†∥/(Lf + LG )}, with a = f (x0) and u ∈ {u | ∥u∥1 ≤ 1}. If R̂(T , x0)

denotes the reachable set of the system above, then R̂(T , x0) ⊆ RG(T , x0).
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Incorporating Additional Knowledge

We want to determine how we can incorporate additional knowledge to improve our
underapproximations

Underapproximations should better reflect the complex shape of the interior of the GVS

Assume knowledge of f (x) but G (x) remains unknown

Assume knowledge of G (x0) with element-wise perturbations on elements of G (x0)

G (x) lives in the space of all viable known elementwise perturbations of G (x0)

The problem statement remains consistent with previous work
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New Method for Underapproximating the GVS

We are currently trying to solve an
optimization problem with infinitely many
constraints

Simplify the problem to an optimization
problem with finitely many constraints

Use existing optimization methods to
inscribe an ellipse of maximal volume
inside the GVS

Finite Perturbation Theorem

Within a domain largely consistent with
previous derivations, we can reduce the infinite
constraint optimization problem to one with
finitely many constraints
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Finite Perturbation Theorem

Let δ be the maximum perturbation
magnitude for an element of G (x0)

If ∃u1, u2 ∈ U s.t.

v =

(
G (x0) +

[
+δ 0
0 0

])
u1,

v =

(
G (x0) +

[
−δ 0
0 0

])
u2,

then ∀α ∈ [−1, 1], ∃u∗ ∈ U s.t.

v =

(
G (x0) +

[
αδ 0
0 0

])
u∗.

Any vector contained in the 2n
2
black

edges are also contained in the blue



Finite Perturbation Theorem - Example

Let ∆ =

[
4.5 0
2.5 4.5

]
be the matrix of

maximal element-wise perturbation
magnitudes

Let A =

[
18 0
−6 7

]
Let C∆(A)

=

{[
18 + α14.5 0
−6 + α22.5 7 + α34.5

] ∣∣∣∣ αi ∈ [−1, 1]

}

Â =

[
16 0
−5 5.5

]
∈ C∆(A)



Maximally Inscribed Ellipsoid

Theorem

Let A and ∆k be the nominal and perturbation matrices respectively. Let UΣV T be the
singular value decomposition of A and let Σk = UT (A+∆k)V and Ak = (Σ−1

k )TΣ−1
k . Let

Ek = (A+∆k)U . Then, an ellipsoid E of maximal volume such that E ⊆
⋂

k Ek is given by
E = UBV TU where B is the solution to

minimize
B∈Sn

++,λ1,...,λ
2n

2∈R
log detB−1

subject to

−λk + 1 0 0
0 λk In B

0 B A−1
k

 ≥ 0

for all k ∈ [2n
2
].

The 2n
2
constraints can potentially be reduced with further analysis



Illustrated Results



Analysis of the Results

We are able to characterize the GVS as an
intersection of finitely many ellipsoids

We can use this characterization to
determine an optimally inscribed ellipse
as our underapproximated GVS

If the perturbation matrix is a function of
x , this requires solving an optimization
problem at every time step

Not a realistic method of
underapproximation for real-time
implementation

We can take the worst-case perturbation
for all x within a domain and solve one
optimization problem

Real time implementable
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Generalization of Results to Complete Manifolds

Control systems can exist on manifolds
outside of Rn

Pendulum
Satellite in Orbit
SO(2), SO(3)

Now that we have maximized our
underapproximation, we want to generalize
results to a larger class of systems

We relax assumptions to assume the
control system exists on a complete
Riemannian manifold
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Formal Problem Statement

We have an unknown nonlinear control-affine system operating on a manifold M of the
form:

ẋ = f (x) + G (x)U = f (x) +
∑

l gl(x)u
l , x(0) = x0

f (x) ∈ M and gl(x) ∈ M

We assume knowledge of:

The initial state x0

The input set U = Bm(0; 1)

Local dynamics f (x0) and G (x0)

Learned within an arbitrarily small error from test control inputs

The maximum growth rate of dynamics given by Riemannian Lipschitz bounds Lf and LG
Determined from known physical laws
Uncertainty quantification

Problem Statement
Determine or underapproximate the guaranteed reachable set



Preliminaries for Control Systems on Manifolds

Operations between vector spaces require
connections in the geometric sense

Riemannian Lipschitz

Let V be a continuous vector field on M and τ
be the parallel transport. Then L is the
classical Lipschitz constant on V if

L = sup
γ

|τγV (γ(0))− V (γ(1))|hx
Length(γ)

where γ : [0, 1] → M varies over all C1-paths
and τγ is shorthand for the parallel transport
along the curve γ from γ(0) to γ(1).



Preliminaries for Control Systems on Manifolds

The vector space TxM varies as x ∈ M varies in general

To perform operations between vectors in different tangent spaces, we need to use
connections and parallel transport

The Lipschitz constant may seem difficult to calculate because it depends on varying over
all C1-paths on M.

We perform calculations on a compact subset of the manifold

Lemma

The supremum of the Lipschitz constant on a compact set can be attained if we vary only over
geodesics

Given an appropriate neighborhood, we need only consider one geodesic path

Knowledge of Lipschitz constant for general manifolds as reasonable as in the Euclidean case
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Guaranteed Underapproximation of GVS

Riemannian Ball Underapproximation

Let f (x0), G (x0), Lf , LG , Hx , Γ
k
ij , and gΓ

l for l ∈ [m] be defined as above. Let
γ : [0, 1] → M define a geodesic curve from x0 to x . Let τ̃ define the parallel transport
using the flat connection. If

VG
x = Bn

(
τ̃ xx0f (x0);α(x0, x)

)
∩ Im(τ̃ xx0G (x0))

where VG
x ∈ TxM, and

α(x0, x) = ∥τ̃ xx0G
†(x0)∥−1−

(∥H−1
x ∥∥Hx∥)

1
2

(
∥Hx∥

1
2

∥∥[gΓ
1 . . . gΓ

m

]∥∥ +∥∥∥∥∥∥
∑
i ,j ,k

γ̇ iΓkij f
j(x0)e⃗k

∥∥∥∥∥∥+
(
Lg + ∥Hx∥−

1
2Lf

)
d(x0, x)

 ,

(1)

then VG
x ⊆ VG

x .



Calculate the GRS on a Manifold

We interpret the ODI

ẋ ∈ VG
x

as a control system

Theorem

Let R(T , x0) be defined as the reachable set of

ẋ = a+ g(x0, x)u, x(0) = x0,

on {x | d(x0, x) ≤ d(x0, x)}, with a = τ̃ xx0f (x0), u ∈ Bn(0; 1), and g(s0, s) = α(x0, x) if

d(s0, s) ≤ d(x0, x). Then R(T , x0) ⊂ RG(T , x0).

The domain d(x0, x) is explicitly defined in the literature
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Illustrated Results



Analysis of Results and Next Steps

We have generalized the capabilities of determining what an unknown nonlinear system
can provably achieve to systems operating on any complete Riemannian manifold

The results focus on generalizing results for the ball underapproximation

Generalizations for other derived underapproximations can be calculated in a similar manner

We have now derived underapproximations aimed at the following:

Containing simple geometric properties that allow for real-time implementation
Producing guaranteed reachable sets through optimization methods to calculate the maximal
set of reachable states
Generalizing the underapproximations to manifolds to incorporate a larger class of systems

We now want to determine how we can use this information to synthesize control action
for unknown nonlinear systems
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System Identification

Create a mapping from input trajectories
to observed output trajectories

Recursive least squares approach
Neural networks

Requires knowledge of individual
trajectories and control of actuators

What if the only information one had
access to is the reachable sets?
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Reachable Sets

We have the system dynamics

x [i + 1] = Ax [i ] + bu[i ], x [0] = 0

For i ∈ Z≥0, the (forward) reachable set
for the system at time i is

R(i , x [0]) = {ϕu(i ; x [0]) | u : Z≥0 → U}

Defines the set of states which are
reachable at time i for the system using
all u ∈ U
Calculated through Minkowski sums



Minkowski Sum

Given two sets S1,S2 ∈ Rn we denote

S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}



Technical Assumptions

Uniquely determine system model under the following assumptions:

Single-Input System

Generic Properties

Discrete Linear System

x [i + 1] = Ax [i ] + bu[i ], x [0] = 0, u ∈ U

Consecutive unit-length time steps

Fully Controllable System

The input set U is completely known

How can we solve for A and b given the assumptions above?



Reachable Sets as Minkowski Sums

We have the following system:

x [i + 1] = Ax [i ] + bu[i ], x [0] = 0, u ∈ U

R(i , 0) = the reachable set of the system above at time i

R(1, 0) = bU

x [i ] = Aix [0] + Ai−1bu[0] + . . .+ bu[i − 1]

This implies:

R(i , 0) = Ai−1bU ⊕ . . .⊕ bU

R(i , 0) = Ai−1bU ⊕R(i − 1, 0)

Therefore:

Ai−1bU = R(i , 0)⊖R(i − 1, 0)



Minkowski Difference

Given two sets A, B ∈ Rn

A⊖ B = {c ∈ Rn | c ⊕ B ⊆ A}
Let v (i) ∈ V be the vertices of R(i − 1, 0)

R(i , 0)⊖R(i − 1, 0) =⋂
v (i)∈V(R(i , 0)− v (i))



Solving for Dynamics

Solving for the vector b with knowledge of
U is trivial

R(1, 0) = bU

Similarly we can solve for Aib with
knowledge of U

Ai−1bU = R(i , 0)⊖R(i − 1, 0)

If we have a controllable system

CA,b =
[
b Ab . . . Ai−1b

]
CA,b is invertible
A = ACA,bC

−1
A,b



Uniqueness

Can we determine if the calculated dynamics A and b are unique?

In general cases no

A = I , b =

[
0
1

]
A =

[
0 0
0 1

]
, b =

[
0
1

]

Yes under the following conditions:

Generic system properties

A is invertible
A is diagonalizable
A contains distinct eigenvalues
First element of right eigenvectors of A are nonzero

Any generic system with an input set U asymmetric around the origin

Generic 2D system with an input set U symmetric around the origin
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Analytical Results for Uniqueness

Theorem

Under generic assumptions, we can uniquely identify the unknown dynamics of a discrete
linear system with an input set asymmetric around the origin using n + 1 reachable sets for
unit time intervals

Remark

The theorem above holds for systems with symmetric input sets of dimension 2



Bandpass Filter Circuit Example

Fourth-order band-pass circuit

Controllable canonical representation

x [i + 1] = Ax [i ] + bvc [i ] =


0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3

 x [i ] +


0
0
0
1

 vc [i ]

vc [i ] ∈ [0, 1] for all i ∈ Z≥0

If a0 ̸= 0 then assumptions are likely satisfied

A invertible
A diagonalizable

Want to recover the true parameters

a0 = 3, a1 = 2, a2 = 3, a3 = 6



Bandpass Filter Circuit Example

R(1, 0) = conv



0
0
0
0

 ,


0
0
0
1


 , R(2, 0) = conv




0
0
1
−5

 ,


0
0
1
−6

 ,


0
0
0
0

 ,


0
0
0
1




R(3, 0) = conv




0
0.86
−6.02
33.00

 ,


0

−0.14
0.98
−6.00

 ,


0

−0.14
0.98
−5.00

 ,


0

0.86
−6.02
34.00




R(4, 0) = conv



−0.15
1.05
−5.99
33.00

 ,


0.85
−5.95
34.01
−188

 ,


0.85
−5.95
34.01
−187

 ,


−0.15
1.05
−5.99
34.00




R(5, 0) = conv




−5.93
33.88

−188.02
1035.00

 ,


1.07
−6.12
33.98

−188.00

 ,


1.07
−6.12
33.98

−187.00

 ,


−5.93
33.88

−188.02
1036.00






Bandpass Filter Circuit Example

R(1, 0) = bU where U = [0, 1]

b can be trivially computed

b =
[
0 0 0 1

]T

Recall Ai−1bU = R(i , 0)⊖R(i − 1, 0)

Ab =


0
0
1
−6

 , A2b =


0
1
−6
33

 , A3b =


1
−6
33

−182

 , A4b =


−6
33

−182
1002


A = ACA,bC

−1
A,b =

[
A4b A3b A2b Ab

] [
A3b A2b Ab b

]−1

If we want to find A for an n dimensional system, we can do so with n + 1 reachable sets
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Further Analysis

To apply this method to our previous results, we need to generalize these results to the
continuous domain for multi-input systems

Can potentially avoid generalizing to nonlinear systems for short-time intervals

Zonotopes are not closed under Minkowski difference when U ⊆ Rm and m > 2

We ideally want to develop a method that can use all the existing developments in
resilient task assignment to synthesize control action for a large class of systems

New Strategy:
Utilize the proxy system we use to calculate the guaranteed reachable set to synthesize
control action with an arbitrarily small error for short-time intervals
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Controller Synthesis for Reachable Paths

We do not have the dynamics of the unknown system

During resilient task assignment, we derived a proxy system whose reachable set
converges to the true reachable set as t → 0

We want to use this proxy system to synthesize control action

Challenges:

Learn how u affects the unknown system based on information from proxy control system

Develop convergence guarantees

True state using proxy control must converge to the desired state

Synthesize control action capable of maneuvering an unknown system in real time
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Reachable Sets as t → 0



Review of Original Assumptions with New Problem Statement

We have an unknown nonlinear control-affine system of the form:

ẋ = f (x) + G (x)U , x(0) = x0
f (x) ∈ Rn and G (x) ∈ Rn×m

We assume knowledge of:

The initial state x0

The input set U = Bm(0; 1)

Local dynamics f (x0) and G (x0)

Learned within an arbitrarily small error from test control inputs

The maximum growth rate of dynamics given by Lipschitz bounds Lf and LG
Determined from known physical laws
Uncertainty quantification

Problem Statement
Synthesize control action for an unknown nonlinear system



Control Framework and Strategy

Previous work showed that with these assumptions, we can produce some guaranteed set
of reachable states

The guaranteed reachable set ∂R̂(T , x0) is found by finding the reachable set of a proxy
system of the form

˙̂x(t) = a+ (b − c |x̂(t)|)û(t), x̂(0) = x0,

on the domain B where a = f (x0), b = ∥G †(x0)∥−1, c = Lf + LG , and
ϕ̂û(·; x0) : [0,∞) → Rd is the controlled flow map (solution) under û.

Proposition

Suppose x0 ∈ Int(B) and y ∈ ∂R̂(T , x0). Then, û ≡ y−aT−x0
|y−aT−x0| is the unique control (almost

everywhere) such that ϕ̂û(T ) = y . Consequently, there exists a unique controlled path from x0
to y .

We can determine the GRS at some state, reach some y ∈ ∂R̂(T , x0), then repeat the
process to follow some piecewise linear path and reach some eventual desired end state
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Control Framework and Strategy

The pipeline is as follows:

We learn the system dynamics using
m + 1 affinely independent constant
inputs
We execute an initial control
u = (1− ϵ) G†(x0)(y)

∥G†(x0)∥|y | to send the system

towards y
We create a sequence {zn} such that
zn = θny and {θn} → 1 is an increasing
sequence where θn ∈ [0, 1]
Each input un forms a direct path
towards zn with an arbitrarily small error

As zn → y , so to does the control
system
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Implementation of Control Strategy

The algorithm tuning parameters are δt,
ϵ, k so that the appropriate construction
of {zn} can be initialized

δt: Frequency at which algorithm
chooses new zn
ϵ: Ensures the sequence {u0,j} is a
subset of U

an ϵ too large creates a large error and
if too small then {u0,j} ̸∈ U

k: Determines the size of your
convergence radius r

Large k =⇒ large r
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Reachable Predictive Control

We can use proxy system dynamics to synthesize control action for small time intervals

We now have a verifiable method of controlling an unknown nonlinear system

The pipeline is as follows:

Active learning methods learn the local dynamics with an arbitrarily small error

Calculate the GRS using the local dynamics and additional information from known physical
laws and a priori quantization techniques

Synthesize a learned controller capable of navigating to any state in the GRS

Reinitialize the local dynamics around the newly reached state and repeat until some final
goal state is reached
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Future Work

Given the existing accomplishments through existing publications, we would like to
achieve the following:

Utilize machine learning techniques to create bounds consistent with assumptions in resilient
task assignment

Generalize results to a larger class of underactuated systems

Utilize multiple trajectories to improve results derived in resilient task assignment

Develop a notion of long-term stability guarantees for RPC

Demonstrate RPC effectively on a system without knowledge of the system dynamics

The ultimate goal is to illustrate by example how RPC can control an unknown nonlinear
system and analyze its efficacy
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Resilient Task Assignment for Underactuated Systems

Emphasize that the ultimate goal is to make RPC real-time implementable

A large class of practical systems are underactuated

Motivates us to broaden the existing results from resilient task assignment to include a larger
class of underactuated systems

Challenge:
The guaranteed velocity set is empty for general cases when Im(f (x)) ̸⊂ Im(G (x))

We cannot repeat the same method as before to solve for the GRS
The same method would result in the empty set

We use the notion of eventual reachabilty
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Resilient Task Assignment for Underactuated Systems

Eventual (Forward) Reachability

We define the eventual forward reachable set of M(f ,G ) as

Rf ,G (T , x0) =

 ⋃
t∈[0,T ]

ϕf ,G
u (t; x0) | u : [0,T ] → U , t ∈ [0,T ]


where Rf ,G (T , x0) represents the set of states that can be reached within some time T .

For short time intervals the exact amount of time it takes to reach a state is less
significant

Interested in determining if a state is provably reachable

Not important to know the exact time that state is reached



Resilient Task Assignment

Lemma

Let

ẋ = f (x(t)), x(0) = x0 (2)

and let λ : Rn → [1,+∞) such that

ż = λ(z(t))f (z(t)), z(0) = z0. (3)

If x0 = z0 and limt→∞
∫ t
0

1
λ(x(s)) ds = ∞, then there exists t ∈ [0,T ] such that z(t) = x(T ).

If two velocities are colinear and the initial state x(0) = z(0), then any state reached by
(2) at some time T would have been reached by (3) for some time t ∈ [0,T ]



Autonomous Vehicle Application

We want to demonstrate the ability for
RPC control a system

We can use the proxy system to develop
control action aimed at navigating an
autonomous system with short-term
performance guarantees

Challenge:

Use onboard sensors to detect obstacles
and navigate around an unknown
environment with the ultimate goal of
reaching some state using RPC

Determine how to choose desired reach
states within the underapproximated
GRS to reach eventual goal state
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Soft Robotics Application

Soft robots are difficult to model

Physics-based models are limited due to
the chaotic nature of soft material

Use machine learning methods to quantify
a relationship between position and
stiffness

Use information from machine learning to
gain knowledge consistent with
assumptions outlined in previous work for
resilient task assignment

Apply RPC to accomplish a provably
achievable performance objective
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Control of Unknown Systems Using the Koopman Operator

Goal: Utilize observable trajectories to perform system identification within some
quantifiable error

We can use dynamics recovered through SysID using the Koopman operator to perform
reachability analysis and synthesize control action

Consider a complete normed function space (F , ∥ · ∥F ) of real-valued observable functions
h : X → R.

In the context of operator learning, observable functions refer to test functions for operators
Not equal to control systems which refer to the concept of observability

Koopman Operator Family

The Koopman operator family {K}t≥0 of the nonlinear system is a collection of maps
Kt : F → F defined by

Kth = h ◦ ϕ(t, ·), h ∈ F

where ◦ denotes the composition of ϕ with F .
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Control of Unknown Systems Using the Koopman Operator

For autonomous systems
ẋ = f (x),

there is a semigroup of Koopman operators K∆t associated with the flow map for time
interval ∆t

The infinitesimal generator for this semigroup is defined as

Lh(x) := limt→0
Kth(x)− h(x)

t
≈

∫ τ

0

e−λsh(ϕ(s, x)) ds

with any fixed τ > 0 for a sufficiently large λ

Define pj : X → R as the projection function to the j th dimension

We can learn fj at each j at samples points {xm} with

fj(x
(m)) ≈ Lpj(x) =

∫ τ

0
e−λspj(ϕ(s, x)) ds
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Control of Unknown Systems Using the Koopman Operator

We have the unknown nonlinear system

ẋ = f (x) + G (x)u = f (x) +
∑
l

gl(x)u
l , x(0) = x0

We can use the method outlined in the previous slide to learn f and gl using the Koopman
operator

With enough data, we can perform system identification to learn f and gl within some
error bound

Additionally, we can determine long-term stability guarantees

Further improvement involves adaptation of onboard capabilities

Determining how information gathered onboard can improve error bounds and performance
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