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o Dynamic models are not always available in every situation where control is needed
o Adverse event creating an abrupt change in the system dynamics
o Chaotic systems without existing reliable dynamic models

@ Question: How can we optimally utilize additional knowledge to control a nonlinear
system without a dynamics model?

o Onboard learning methods
o Known physical laws
o Observable behaviors like previous trajectories
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o Robust Control: o Adaptive Control:
o Develop control action for worst case o Control method which adapts to
unknown disturbances parametric uncertainty

o Unlike robust control, no a priori
information on the bounds of the
uncertain parameters needed

o Requires a dynamic model and worst-case
bounds on the potential disturbances

o Performance can be sluggish when

A o Control law adapts to parametric
disturbances bounds are too large

change

o Inherently conservative o Fails if the parametric change is too

o Prioritize safety significant
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Control Pipeline

o Active learning

o Learn local dynamics with an arbitrarily
small error from test control inputs

o

o Resilient Task Assignment

o Determine what you can provably
achieve without knowing the true system
dynamics

Local
Dynamics

o Controller Synthesis

o Synthesize a controller using gathered
knowledge without a dynamics model

Guaranteed
Reachable States
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Overview

o Resilient Task Assignment: o Controller Synthesis:

o Determine the gua.ranteed set of o Synthesize control action based on the
reachable states without knowledge of limited knowledge gained from active
the system dynamics learning and resilient task assignment

o Solve for the Guaranteed Reachable Set o We consider two methods:
of an unknown system . .

u wh sy . . o Utilize reachable sets to directly
© A guaranteed underapproximation of perform system identification and learn
the true reachable set of the unknown the model of our unknown system
system
. . . o Use a proxy system model derived
o We solve for various underapproximations during resilient task assignment to
of the true reachable set under different synthesize a controller for small time

assumptions and detail their advantages intervals
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Guaranteed Reachability

T=0.05

o It is impossible to determine the exact set
of reachable states without full knowledge
of the system dynamics

o To determine what is provably possible,
we want to underapproximate such a set

L2

Guaranteed Reachable Set

A set of states that are provably achievable for
a system within a given time frame
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Framework for Under-Approximating the GRS

o Calculate an ordinary differential inclusion whose right-hand side is the set of all velocities
that can be taken by all systems consistent with the assumed knowledge of the dynamics

o Underapproximate said set with another set whose geometric properties allow for it to be
represented by a proxy control system

o Simple geometric properties allow for real-time implementation

o The reachable set of the proxy system will underapproximate the guaranteed reachable set

o Calculate the reachable set of the proxy control system

Proposition

The reachable set of the proxy system is contained in the true reachable set of the unknown
system for all time
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Formalized Problem Statement

@ We have an unknown nonlinear control-affine system of the form:
o x="f(x)+ G(x)U, x(0)=x
o f(x) € R" and G(x) € R™m™
o We assume knowledge of:
o The initial state xg
o The input set Y = B™(0;1)
o Local dynamics f(xp) and G(xp)

o Learned within an arbitrarily small error from test control inputs

o The maximum growth rate of dynamics given by Lipschitz bounds Lf and L¢g

o Determined from known physical laws
o Uncertainty quantification

Problem Statement
Determine or underapproximate the guaranteed reachable set
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Guaranteed Velocity Set

o We are left with infinitely many candidate
systems consistent with our assumptions

o Let us denote Do, as the set of all f, G
consistent with our assumptions

o We introduce the following ODI:
o x €V ="f(x)+ G(x)U, x(0)=xo g

Guaranteed Velocity Set

The intersection of the set of all velocities
whose dynamics are consistent with our
assumptions:

VY = N(£,6)eDenf (X) + GOU C Vy




Derived Ball Underapproximation

Ball Underapproximation

Let U, L¢, and Lg be defined as above. Let x € R satisfy (L + Lg)||x|| < [|GT(x0)|| 7 .
Define

VY =B"(f(x0); |GT(x0)[I 7" = (Lr + Lo)lIx]l) N Im(G(x0))-
Then, V¢ C V9.




Derived Convex Underapproximation

Advanced Convex Underapproximation

Let U, L¢, and L be defined as above. Let =1 if rank(G(xp)) = m=n, u = /2 if
rank(G(xp)) = min(m, n) and m # n, pu = % if rank(G(xp)) < min(m, n), and let x satisfy
(Le + Le)lIx| < [IGT(xo)lI 1. If

V9 = {f(x0) + kd | ||d|| = 1,d € Im(R), 0 < k < K(d)}

. _ 161 o)~ = (Le + Le)lx]
& KD) = Gt )G oo) T = LelIxl) + G o) e <]

then ljf cVy.

v

For invertible matrices G(xp), _g C =§.




Visual Interpretation of GVS Underapproximations
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Interpretation of Ball ODI as a Control System

o Let RY(T,xo) be defined as the guaranteed reachable set of our unknown system.

o We interpret the following ODI:
).(G]_)g, X(O):Xo,

as a control system
@ The reachable set of such a control system contained in the guaranteed reachable set

Let us consider the control system

x=a+g(lxlDa, x(0) = o,

on {x | [Ix|| < |Gt (x0)|l/(Ls + Lg)}, with a = f(xo), @ € B"(0; 1) N Im(G(x)) and where
g(s) = |GT(s0)|| 7 — (L + Lg)s if s < ||GT(s0)|| 7Y/ (Lg + L¢). If R(T,xo) is the reachable
set of the control system above, then R(T,xp) C RY(T, xo).




Interpretation of the Polygon ODI as a Control System

o We interpret the following ODI:
x € P(S(x)), x(0)= xo,

as a control system.

Let s € R and g(s) = [|G(0)"| ™ = (Lg + Lr)s, a(s) = [|G(s0)'[|”* — Les,

B(s) = u||G(s0)||Lgs with p as defined in Theorem 2. Let UX VT be the singular value
decomposition of G(xg) where U = [n1, ...,1a]. Let r = rank(G(xp)); we define A(s) € R"*™
such that diag(A(s)) = max{a(s)llc(i()ﬂhwﬁ(s),g(s),0} and \ji(s) = 0 elsewhere.

The reachable set of x € P(S(x)) equals the reachable set of the control system

% = a+ UA(x])u, x(0) = xo,

on {x | |Ix|]| < IG(x0)T|l/(Ls + Lg)}, with a = f(xo) and v € {u | [Jufly <1} If R(T,x0)
denotes the reachable set of the system above, then R(T,x0) € RY(T, xo).
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Visual Interpretation of the Results
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Incorporating Additional Knowledge

o We want to determine how we can incorporate additional knowledge to improve our
underapproximations
o Underapproximations should better reflect the complex shape of the interior of the GVS

o Assume knowledge of f(x) but G(x) remains unknown

o Assume knowledge of G(xp) with element-wise perturbations on elements of G(xp)
o G(x) lives in the space of all viable known elementwise perturbations of G(xp)

@ The problem statement remains consistent with previous work
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New Method for Underapproximating the GVS

o We are currently trying to solve an
optimization problem with infinitely many
constraints 15

o Simplify the problem to an optimization
problem with finitely many constraints

o Use existing optimization methods to
inscribe an ellipse of maximal volume of
inside the GVS

Finite Perturbation Theorem ol

Within a domain largely consistent with
previous derivations, we can reduce the infinite
constraint optimization problem to one with
finitely many constraints

-15
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Finite Perturbation Theorem

o Let § be the maximum perturbation
magnitude for an element of G(xp)

o If Juy,up € Us.t.

+6 0 10
v = (G(Xo) + [ 0 0]) ui,
-5 0 0
= (s [ o) 2 .5
then Va € [-1,1], Ju* € Us.t. o
6 0 * ) 30
v = (G(Xo)—i—[oa O])u.

o Any vector contained in the 2" black
edges are also contained in the blue



Finite Perturbation Theorem - Example

45 0 .
o Let A = [2.5 4.5] be the matrix of
maximal element-wise perturbation
magnitudes 122.5
18 0
o Let A= [—6 7]
o Let Ca(A) 116
18 + 4.5 0 ] } 1135
_ ’ — * + = (1.1)
{ |: 6+ 25 74 az4.5 ~85 —5 —35 Apy
A 16 0
0o A= [_5 5.5:| S CA(A)



Maximally Inscribed Ellipsoid

Let A and Ay be the nominal and perturbation matrices respectively. Let ULV T be the
singular value decomposition of A and let £ = UT(A+ Ag)V and A, = (£, 1)7E, 1 Let
Ek = (A+ Ax)U. Then, an ellipsoid £ of maximal volume such that £ C (), & is given by
& = UBV U where B is the solution to

minimize  logdet B!
BESH A1\ 2 €R

—X+1 0 0
subject to 0 Xl B | >0
0 B Al

forall k € [27].

o The 2™ constraints can potentially be reduced with further analysis






Analysis of the Results

o We are able to characterize the GVS as an
intersection of finitely many ellipsoids

T =0.20




Analysis of the Results

o We are able to characterize the GVS as an
intersection of finitely many ellipsoids
o We can use this characterization to T=020
determine an optimally inscribed ellipse [
as our underapproximated GVS




Analysis of the Results

o We are able to characterize the GVS as an
intersection of finitely many ellipsoids
o We can use this characterization to T=020
determine an optimally inscribed ellipse [
as our underapproximated GVS

o If the perturbation matrix is a function of
x, this requires solving an optimization
problem at every time step

o Not a realistic method of
underapproximation for real-time
implementation




Analysis of the Results

o We are able to characterize the GVS as an
intersection of finitely many ellipsoids
o We can use this characterization to T=020
determine an optimally inscribed ellipse [
as our underapproximated GVS

o If the perturbation matrix is a function of
x, this requires solving an optimization
problem at every time step

o Not a realistic method of
underapproximation for real-time
implementation

o We can take the worst-case perturbation
for all x within a domain and solve one
optimization problem

o Real time implementable
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Generalization of Results to Complete Manifolds

o Control systems can exist on manifolds
outside of R”

o Pendulum
o Satellite in Orbit
e 50(2), SO(3)

o Now that we have maximized our
underapproximation, we want to generalize
results to a larger class of systems

o We relax assumptions to assume the
control system exists on a complete
Riemannian manifold




Formal Problem Statement

o We have an unknown nonlinear control-affine system operating on a manifold M of the
form:

o x=f(x)+ G(x)U =f(x)+>,g(x)u, x(0)=x
o f(x) € Mand gi(x) e M
o We assume knowledge of:
o The initial state xq
o The input set U = B™(0; 1)
o Local dynamics f(xp) and G(xp)
o Learned within an arbitrarily small error from test control inputs
o The maximum growth rate of dynamics given by Riemannian Lipschitz bounds L and Lg

o Determined from known physical laws
o Uncertainty quantification

Problem Statement
Determine or underapproximate the guaranteed reachable set




Preliminaries for Control Systems on Manifolds

o Operations between vector spaces require
connections in the geometric sense

Riemannian Lipschitz

Let V be a continuous vector field on M and 7
be the parallel transport. Then L is the
classical Lipschitz constant on V if

L = s [YE(O) = VOl
P Length(3)

where 7 : [0,1] — M varies over all C-paths
and T, is shorthand for the parallel transport
along the curve 7 from ~(0) to v(1).




Preliminaries for Control Systems on Manifolds

o The vector space T, M varies as x € M varies in general



Preliminaries for Control Systems on Manifolds

o The vector space T, M varies as x € M varies in general

o To perform operations between vectors in different tangent spaces, we need to use
connections and parallel transport



Preliminaries for Control Systems on Manifolds

o The vector space T, M varies as x € M varies in general
o To perform operations between vectors in different tangent spaces, we need to use
connections and parallel transport

o The Lipschitz constant may seem difficult to calculate because it depends on varying over
all C'-paths on M.

o We perform calculations on a compact subset of the manifold



Preliminaries for Control Systems on Manifolds

o The vector space T, M varies as x € M varies in general
o To perform operations between vectors in different tangent spaces, we need to use
connections and parallel transport

o The Lipschitz constant may seem difficult to calculate because it depends on varying over
all C1-paths on M.

o We perform calculations on a compact subset of the manifold

The supremum of the Lipschitz constant on a compact set can be attained if we vary only over
geodesics




Preliminaries for Control Systems on Manifolds

o The vector space T, M varies as x € M varies in general
o To perform operations between vectors in different tangent spaces, we need to use
connections and parallel transport

o The Lipschitz constant may seem difficult to calculate because it depends on varying over
all C1-paths on M.

o We perform calculations on a compact subset of the manifold

The supremum of the Lipschitz constant on a compact set can be attained if we vary only over
geodesics

@ Given an appropriate neighborhood, we need only consider one geodesic path
o Knowledge of Lipschitz constant for general manifolds as reasonable as in the Euclidean case



Guaranteed Underapproximation of GVS

Riemannian Ball Underapproximation

Let f(x0), G(x0), L, LG, Hx, Ffj and g for | € [m] be defined as above. Let
v : [0,1] — M define a geodesic curve from xp to x. Let 7 define the parallel transport
using the flat connection. If

]_))g( =B" (75 f(x0); (X0, X)) N Im(75 G(x0))
where V9 € TM, and
a(x0,x) = |7 G (x0)| 7 —
_ 1 1
(IH NN (1A ([ - Rl +

" !
Z’y’l'kff (x0)ék|| + (Lg + || Hx | 2Lf> d(x0,x) | ,
ik

then Vf cVy.
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Calculate the GRS on a Manifold

o We interpret the ODI

b

x €
as a control system

Theorem
Let R(T,xo) be defined as the reachable set of

X = a-l-g(xo,x)u, X(O) = X0,

on {x | d(x0,x) < H(XO,X)_}, with a = 7 f(x0), u € B"(0;1), and g(so,5) = a(xo, x) if
d(s0,s) < d(xo,x). Then R(T,x0) C RY(T, xo).

o The domain d(xg, x) is explicitly defined in the literature



[llustrated Results
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o The results focus on generalizing results for the ball underapproximation
o Generalizations for other derived underapproximations can be calculated in a similar manner
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Analysis of Results and Next Steps

o We have generalized the capabilities of determining what an unknown nonlinear system
can provably achieve to systems operating on any complete Riemannian manifold

o The results focus on generalizing results for the ball underapproximation
o Generalizations for other derived underapproximations can be calculated in a similar manner

o We have now derived underapproximations aimed at the following:

o Containing simple geometric properties that allow for real-time implementation

o Producing guaranteed reachable sets through optimization methods to calculate the maximal
set of reachable states

o Generalizing the underapproximations to manifolds to incorporate a larger class of systems

o We now want to determine how we can use this information to synthesize control action
for unknown nonlinear systems
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System ldentification

o Create a mapping from input trajectories
to observed output trajectories
o Recursive least squares approach
o Neural networks

u(t) —| System |— y(t)
@ Requires knowledge of individual J
trajectories and control of actuators

o What if the only information one had
access to is the reachable sets?



Reachable Sets

o We have the system dynamics -
o x[i + 1] = Ax[i] + bu[i], x[0]=0 L
o For i € Z>g, the (forward) reachable set o
for the system at time / is

o R(i,x[0]) = {pu(i;x[0]) | u:Z>o — U} oo s '

o Defines the set of states which are
reachable at time / for the system using
alueld

o Calculated through Minkowski sums

2
b b b A e e N w a



Minkowski Sum

o Given two sets S1,S> € R"” we denote

S1EBSQ={51+52 | 51681,52682}

S1 and Sz S16S
T T
2 B 2 B
5 0 B (s B
_9 | 4 ol i
| | | | | |
—2 0 2 —2 0 2

() T



Technical Assumptions

o Uniquely determine system model under the following assumptions:

Single-Input System

Generic Properties

o Discrete Linear System

o x[i+ 1] = Ax[i] + bu[i], x[0]=0, wvelU
o Consecutive unit-length time steps

o Fully Controllable System

The input set U is completely known

How can we solve for A and b given the assumptions above?



Reachable Sets as Minkowski Sums

o We have the following system:

o x[i+1] = Ax[i] + bu[i], x[0]=0, wvelU

o R(i,0) = the reachable set of the system above at time i
e R(1,0) = b
o x[i] = Ax[0] + A= bul0] + ... + bu[i — 1]
o This implies:
o R(i,0)=A"1hU @ ...® bU
o R(i,0) = A=1bUd ® R(i — 1,0)
o Therefore:

o AT1hU = R(i,0) © R(i — 1,0)



Minkowski Difference

o Given two sets A, B € R” 1
o AcB={ceR"|coBC A}

o Let v() €V be the vertices of R(i —1,0)

o R(i,0) & R(i —1,0) = .

Nvoey(R(i,0) — v()

-3
-20 -15 -10 -5 0 5 10 15 20
X,



Solving for Dynamics

@ Solving for the vector b with knowledge of 55 2107

U is trivial Sl
° R(]_70) = bU 15+
o Similarly we can solve for A’b with oSt
knowledge of U 0
i1 _ . . 05
o A-lplf = R(i,0) & R(i — 1,0)
o If we have a controllable system 12
e CA,b = [b Ab ... Ai_lb] 235 1 0.5 0 0.5 1 15
o Cap is invertible %l x10°

o A=ACasCy,



Uniqueness

Can we determine if the calculated dynamics A and b are unique?

o In general cases no

o A1, b:[ﬂ
b=

00
°A_h J’

i
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Uniqueness

Can we determine if the calculated dynamics A and b are unique?

o In general cases no

o A=1, b:[ﬂ

ol Yol

@ Yes under the following conditions:
o Generic system properties

o A is invertible

o A is diagonalizable

o A contains distinct eigenvalues

o First element of right eigenvectors of A are nonzero

o Any generic system with an input set &/ asymmetric around the origin

o Generic 2D system with an input set &/ symmetric around the origin



Analytical Results for Uniqueness

Under generic assumptions, we can uniquely identify the unknown dynamics of a discrete
linear system with an input set asymmetric around the origin using n + 1 reachable sets for
unit time intervals

The theorem above holds for systems with symmetric input sets of dimension 2




Bandpass Filter Circuit Example

o Fourth-order band-pass circuit
o Controllable canonical representation

x[i + 1] = Ax[i] + bvc[i] = ve[i]

o v.[i] €]0,1] for all i € Z>g

o If ag # 0 then assumptions are likely satisfied

o Ainvertible
o A diagonalizable

o Want to recover the true parameters
) 3023, 3122, 3223, a==6



Bandpass Filter Circuit Example

o] T[o
ol |o
R(1,0) = conv ol 1o , R(2,0) = conv
o] [1
1o
0.86 ~0.14
R(3,0) =conv | | "ol | 0.08 | -
133.00| |-6.00
[—0.15] [ 0.85 ]
1.05 ~5.05
R(4.0) = conv | | "g'gq1 | 3401 |
133.00| | -188
~5.93 1.07 ]
33.88 ~6.12
R(5,0) =conv | | Jeg ol | 3308 |
1035.00 | |-188.00]

0
0
1

-5

0
~0.14
0.98 |
| —5.00]

[0.85 ]
—5.95

| 187 |

1.07
—6.12
33.98

| —187.00

34.01 "

9y

~6.02
| 34.00 |

[—0.15]

~5.99
34.00

= O O O

0.86

1.05

—5.93
33.88
—188.02
1036.00
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Bandpass Filter Circuit Example

o R(1,0) = b where U = [0, 1]
o b can be trivially computed
sb=1[0 0 0 1]"

o Recall A=1hUf = R(i,0) © R(i —1,0)

0 0 1 —6
o . |1 5, | —6 .| 33
Ab=| | Ab=| |, Ab=]| [ Ab=| To
-6 33 ~182 1002

o A=ACasCabt=[A*h A%b A% Ab] [Ab A’b Ab b]™

o If we want to find A for an n dimensional system, we can do so with n+ 1 reachable sets
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Further Analysis

o To apply this method to our previous results, we need to generalize these results to the
continuous domain for multi-input systems

o Can potentially avoid generalizing to nonlinear systems for short-time intervals
o Zonotopes are not closed under Minkowski difference when &/ C R™ and m > 2

o We ideally want to develop a method that can use all the existing developments in
resilient task assignment to synthesize control action for a large class of systems

o New Strategy:

o Utilize the proxy system we use to calculate the guaranteed reachable set to synthesize
control action with an arbitrarily small error for short-time intervals
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Controller Synthesis for Reachable Paths

@ We do not have the dynamics of the unknown system

o During resilient task assignment, we derived a proxy system whose reachable set
converges to the true reachable set as t — 0

o We want to use this proxy system to synthesize control action

o Challenges:
o Learn how u affects the unknown system based on information from proxy control system
o Develop convergence guarantees
o True state using proxy control must converge to the desired state

o Synthesize control action capable of maneuvering an unknown system in real time



Reachable Sets as t — 0
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Review of Original Assumptions with New Problem Statement

@ We have an unknown nonlinear control-affine system of the form:
o x="f(x)+ G(x)U, x(0)=x
o f(x) € R" and G(x) € R™m™
o We assume knowledge of:
o The initial state xg
o The input set U = B™(0;1)
o Local dynamics f(xp) and G(xp)

o Learned within an arbitrarily small error from test control inputs

o The maximum growth rate of dynamics given by Lipschitz bounds Lf and L¢g

o Determined from known physical laws
o Uncertainty quantification

Problem Statement

Synthesize control action for an unknown nonlinear system
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Control Framework and Strategy

o Previous work showed that with these assumptions, we can produce some guaranteed set
of reachable states

o The guaranteed reachable set 87@(T,x0) is found by finding the reachable set of a proxy
system of the form

x(t) = a+ (b—c[x(t))a(t). R(0) = x,

on the domain B where a = f(xg), b = ||G'(x0)|| 7}, ¢ = Lf + Lg, and
ba(-;x0) : [0,00) — R is the controlled flow map (solution) under 4.

Proposition
Suppose xp € Int(B) and y € 9R(T,xp). Then, i = I_)%:igl is the unique control (almost

everywhere) such that ¢;(T) = y. Consequently, there exists a unique controlled path from xo
to y.

@ We can determine the GRS at some state, reach some y € 87%(T,xo), then repeat the
process to follow some piecewise linear path and reach some eventual desired end state
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Control Framework and Strategy

@ The pipeline is as follows:

o We learn the system dynamics using
m + 1 affinely independent constant
inputs

o We execute an initial control
u=(1- E)H_Gf% to send the system
towards y

o We create a sequence {z,} such that
z, =0,y and {0,} — 1 is an increasing
sequence where 0, € [0, 1]

o Each input u, forms a direct path
towards z, with an arbitrarily small error

o As z, — y, so to does the control
system
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Implementation of Control Strategy

o The algorithm tuning parameters are dt,
€, k so that the appropriate construction
of {z,} can be initialized

o 0t: Frequency at which algorithm
chooses new z,
o e: Ensures the sequence {ug} is a
subset of U
@ an € too large creates a large error and
if too small then {uwo;} ¢ U
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Implementation of Control Strategy

o The algorithm tuning parameters are dt,
€, k so that the appropriate construction
of {z,} can be initialized

o 0t: Frequency at which algorithm
chooses new z,
o e: Ensures the sequence {ug} is a
subset of U
@ an € too large creates a large error and
if too small then {uwo;} ¢ U
o k: Determines the size of your
convergence radius r
o Large k = large r

Controlled Trajectories with Guaranteed Reachability
30

20

10 -
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Reachable Predictive Control

o We can use proxy system dynamics to synthesize control action for small time intervals
o We now have a verifiable method of controlling an unknown nonlinear system

o The pipeline is as follows:
o Active learning methods learn the local dynamics with an arbitrarily small error
o Calculate the GRS using the local dynamics and additional information from known physical
laws and a priori quantization techniques
o Synthesize a learned controller capable of navigating to any state in the GRS

o Reinitialize the local dynamics around the newly reached state and repeat until some final
goal state is reached
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o Given the existing accomplishments through existing publications, we would like to
achieve the following:

o Utilize machine learning techniques to create bounds consistent with assumptions in resilient
task assignment

o Generalize results to a larger class of underactuated systems

o Utilize multiple trajectories to improve results derived in resilient task assignment
o Develop a notion of long-term stability guarantees for RPC

o Demonstrate RPC effectively on a system without knowledge of the system dynamics

o The ultimate goal is to illustrate by example how RPC can control an unknown nonlinear
system and analyze its efficacy
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Resilient Task Assignment for Underactuated Systems

o Emphasize that the ultimate goal is to make RPC real-time implementable
o A large class of practical systems are underactuated
o Motivates us to broaden the existing results from resilient task assignment to include a larger
class of underactuated systems
o Challenge:
o The guaranteed velocity set is empty for general cases when Im(f(x)) ¢ Im(G(x))
o We cannot repeat the same method as before to solve for the GRS
o The same method would result in the empty set

o We use the notion of eventual reachabilty



Resilient Task Assignment for Underactuated Systems

Eventual (Forward) Reachability
We define the eventual forward reachable set of M(f, G) as

ROC(T,x) =4 |J ¢i°(tix0) |u:[0,TI U, te(0,T]
te[0,T]

where Rf:C(T, xp) represents the set of states that can be reached within some time T.

o For short time intervals the exact amount of time it takes to reach a state is less
significant

o Interested in determining if a state is provably reachable
o Not important to know the exact time that state is reached



Resilient Task Assignment

Let
x = f(x(t)), x(0) =xo (2)
and let A : R" — [1, +00) such that
z = Nz(t))f(2(t)), 2(0) = z. (3)
If xo = zp and lim¢_o0 fot m ds = oo, then there exists t € [0, T] such that z(t) = x(T).

o If two velocities are colinear and the initial state x(0) = z(0), then any state reached by
(2) at some time T would have been reached by (3) for some time t € [0, T]
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Autonomous Vehicle Application

o We want to demonstrate the ability for
RPC control a system

o We can use the proxy system to develop
control action aimed at navigating an
autonomous system with short-term
performance guarantees

o Challenge:

o Use onboard sensors to detect obstacles
and navigate around an unknown
environment with the ultimate goal of
reaching some state using RPC

o Determine how to choose desired reach
states within the underapproximated
GRS to reach eventual goal state
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Soft Robotics Application

o Soft robots are difficult to model
o Physics-based models are limited due to
the chaotic nature of soft material
@ Use machine learning methods to quantify
a relationship between position and
stiffness

o Use information from machine learning to
gain knowledge consistent with
assumptions outlined in previous work for
resilient task assignment

o Apply RPC to accomplish a provably
achievable performance objective
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Control of Unknown Systems Using the Koopman Operator

o Goal: Utilize observable trajectories to perform system identification within some
quantifiable error
o We can use dynamics recovered through SysID using the Koopman operator to perform
reachability analysis and synthesize control action
o Consider a complete normed function space (F, || - || #) of real-valued observable functions
h: X —R.
o In the context of operator learning, observable functions refer to test functions for operators
o Not equal to control systems which refer to the concept of observability

Koopman Operator Family

The Koopman operator family {}+>0 of the nonlinear system is a collection of maps
Kt : F — F defined by

Kih=hod(t,), heF

where o denotes the composition of ¢ with F.
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Control of Unknown Systems Using the Koopman Operator

o For autonomous systems
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o For autonomous systems
x = f(x),

there is a semigroup of Koopman operators KCa; associated with the flow map for time
interval At

o The infinitesimal generator for this semigroup is defined as

Keh(x) — h(x)

Lh(x) := lim; 0 ;

~ /0 " e h(g(s, x)) ds

with any fixed 7 > 0 for a sufficiently large A
o Define p; : X — R as the projection function to the jt dimension

o We can learn f; at each j at samples points {x™} with

F(x™) ~ Lpy(x) = /0 " e pi(6(s,x)) ds
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Control of Unknown Systems Using the Koopman Operator

o We have the unknown nonlinear system

X =f(x)+ G()u=f(x)+ > g()u', x(0)=x
1

o We can use the method outlined in the previous slide to learn f and g; using the Koopman
operator

o With enough data, we can perform system identification to learn f and gy within some
error bound

o Additionally, we can determine long-term stability guarantees
o Further improvement involves adaptation of onboard capabilities
o Determining how information gathered onboard can improve error bounds and performance
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