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Reachability of Nonlinear Systems with Unknown Dynamics
Taha Shafa and Melkior Ornik

Abstract— Determining the reachable set for a given nonlinear
control system is crucial for system control and planning. However,
computing such a set is impossible if the system’s dynamics are
not fully known. This paper is motivated by a scenario where
a system suffers an adverse event mid-operation, resulting in
a substantial change to the system’s dynamics, rendering them
largely unknown. Our objective is to conservatively approximate
the system’s reachable set solely from its local dynamics at a
single point and the bounds on the rate of change of its dynamics.
We translate this knowledge about the system dynamics into an
ordinary differential inclusion. We then derive an underapproxi-
mation of the velocities available to the system at every system
state. An inclusion using this approximation can be interpreted as
a control system; the trajectories of the derived control system are
guaranteed to be trajectories of the unknown system. To illustrate
the practical implementation and consequences of our work, we
apply our algorithm to a simplified model of an unmanned aerial
vehicle.

Notice of Previous Publication. This manuscript substantially improves
the work of [1]. Theory has been generalized to include a class of non-
invertible matrices and improved to provide a larger set of reachable states.
All lemmas, corollaries, and Theorems 1, 2, and 4 are entirely novel. Theorem
3 has been slightly modified from existing theorems in [1] given our new
results.

Index Terms—Reachable Set Computation, Nonlinear
Control Systems, Uncertain Systems, Aerospace Systems,
Autonomous Systems

[. INTRODUCTION

Damage to a control system can cause significant change to its
dynamics. In order to avoid endangering people located in the vicinity
of the system, it is crucial to understand the system’s remaining
capabilities. Motivated by specific examples like an aircraft losing
a wing [2] or a UAV becoming damaged in an urban environment
[3], [4] our goal is to underapproximate the unknown system’s set
of reachable states [5], [6] while assuming minimal knowledge about
the system dynamics. We call such a set the guaranteed reachable
set (GRS).

The primary contribution of this paper is to provide a meaningful
underapproximation of the GRS of a control-affine system. We
assume the only available information at the time of computation
consists of (i) local dynamics at a single point, which can be obtained
with an arbitrarily small error from applying test control inputs over
a short period of time [7], and (ii) Lipschitz bounds on the rate
of change of the system’s dynamics provided by prior knowledge
of the system design and physical laws. The reachable set of an
unknown system is impossible to compute. Prior work determining
the reachable set often focused on overapproximations [7], [8].
Without discussing reachable sets, the work in [7], operating under
similar assumptions as our paper, focused on optimistic reachability,
i.e., attempting to reach a particular objective while there exists any
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chance of reaching it. Conversely, this paper computes states that are
guaranteed to be reachable using admissible control signals.

Apart from [7], work on reachability under uncertainty considered
computation of reachable sets with dynamics generated by a finite
number of uncertain parameters [9], [10] or having bounded distur-
bances [11], [12]. Work in adaptive and robust control [8], [13], [14]
and abstraction-based synthesis [15] assumes more knowledge on
the magnitude or structure of the system dynamics. Similarly, robust
underapproximation methods in [16] only consider dynamics under
disturbance-induced time-varying uncertainties. Classical data-driven
learning methods [2], [17] collect data through repeated system runs.
In contrast, this paper contains substantially fewer assumptions and
focuses on deriving as much information as possible for the GRS
based on one system run.

Our approach relies on the interpretation of a control system as a
differential inclusion [18]—-[20] whose right hand side equals the set
of velocities that the system can achieve at every state in the state
space. While, for an unknown system, exact velocity sets may not
be available anywhere, we can determine the family of all velocity
sets that are consistent with prior knowledge of the local dynamics
at a single point and Lipschitz bounds on the rate of change of the
system’s dynamics. The intersection of all elements of such a family
is defined as the guaranteed velocity set (GVS). Such a set is difficult
to express in closed form, however we can analytically derive its
underapproximation to compute an underapproximation of the GRS.

The outline of the paper is as follows: we discuss the problem
statement in greater detail in Section II. We then proceed to derive
two simply expressible sets in Section III, with one set being a ball,
and the other being a more complex convex set, later utilized to derive
a polygon such that both the ball and polygon are contained within
the GVS. Next, in Section IV, we use these sets to derive two classes
of simple control-affine systems whose reachable sets are contained
in the GRS. Lastly, we present numerical examples in Section V with
a brief discussion on the implementation of our method.

A. Notation

The set of all matrices with n rows and m columns is denoted by
R™*™_ For any vector v, ||v|| denotes its Euclidean norm and ||v||;
denotes its 1-norm. For any matrix M, M~ denotes its transpose
and [|M|| denotes its Euclidean norm: [[M|| = max, = 1 [|[Mv].
Equivalently, ||M|| = o1(M), where o;(M) represents the i-th
singular value of M. We also let M t denote the Moore-Penrose
pseudoinverse, Im(M) denote the image (range space) of M, and
Ker(M) denote the kernel (null space) of M. For matrices M and N,
we will say M € Imm(N) if M = N P for some matrix P. Notation
B™(a;b) denotes a closed ball in R™ centered at a € R™ with radius
b > 0 under the Euclidean norm. Set C', (R™; R™) denotes the set of
all functions f : R™ — R with a Lipschitz constant L, i.e., the set
of all functions f that satisfy || f(z) — f(y)|| < L||z — y|| for all z,
y € R™. Notation a+BX where a € R", B € R"*™ and X C R™
denotes the set a + BX = {a + Bz | z € X}.

Il. PROBLEM STATEMENT

Throughout the paper, we attempt to meaningfully underapproxi-
mate the reachable set of a nonlinear control-affine system M(f, G)
defined by



#(t) = f(z(t) + Gz(t))u(t), (0) = o, ey

where all t > 0, z(¢) € R", admissible inputs u(t) € U = B™(0;1),
which is a common setting in reachability analysis [21], [22], and
functions f : R” — R", and G : R" — R™ ™ are globally
Lipschitz continuous with Lipschitz constants Ly > 0 and Lg > 0,
ie., f € CLf(R";]R”) and G € Cp, (R";R"*™). Cases where
Ly =0 or Lg = 0 are simple, thus for the remainder of the paper
we assume Ly > 0 and Lg > 0. Noting that any sufficiently smooth
function is globally Lipschitz continuous on any compact set, the
theory developed in this paper can also be applied to a system whose
states are guaranteed to be bounded, which is naturally true for a
large class of systems [3], [4]. Without loss of generality, we assume
xg = 0.

A. Assumptions and Technical Requirements

In order to approximate the reachable set of (1), the technical work
of [1] requires full actuation at zg = 0, i.e., m = n with G(0) being
full rank. We relax these requirements, so the system M(f, G) need
not be fully actuated at xg = 0, that is, m does not necessarily
equal n. Instead of assuming full actuation, we use the following
assumption:

Assumption I: Functions f and G are of the form f(z) = Rr(x)
and G(z) = RH(x) where R € R™™ is a constant matrix, and
r:R" = R™, H:R" — R™*™ are functions such that H(0) is
invertible.

Obviously, Assumption 1 implies Im(f(z)) C Im(G(x)). The
case of full actuation in [1] corresponds the case where R = I, in
Assumption 1. Motivated by the online learning technique introduced
in [7], we make the following assumption about the knowledge
regarding the system dynamics.

Assumption 2: Bounds Ly and L are known, as well as values
f(0) and G(0) such that G(0) # 0. We also assume knowledge of
Im(R) and Imm(R). However, we do not need to know the value of
R exactly.

We only consider the case where G/(0) # 0 because it is otherwise
impossible to determine anything about guaranteed velocities at states
x # 0. It is easily shown that Im(G(0)) = Im(R) under the
conditions of Assumption 1. For our future results, it is important to
determine the set of z such that Im(G(0)) = Im(G(z)). Crucially,
we show that the images of G(z) and G(0) are equal in some
neighborhood of 0.

of~!
, then

Lemma 1: Under Assumptions 1 and 2, if ||z|| < %
Im(G(x)) = Im(G(0)).

Proof: Weyl’s inequality for singular values dictates that singu-
lar values as functions on matrices are uniformly Lipschitz with re-
spect to the operator norm [23]: ||os(G(x)) —o0s(G(0))]| < ||G(z)—
G(0)|| < Lgl|z||, such that 1 < s < r with r = rank(G(0)). The
Eckhart-Young-Mirsky theorem [24] along with the singular value
decomposition of G(0) show that o-(G(0)) = [|G(0)T[| 7! is the
smallest non-zero singular value of G(0). For z that satisfies ||z|| <
GO e thus have [|os(G(x)) — 05(G(O)]] < or(G(0)), ic.
O'S(G?I)) > 0. Therefore rank(G(x)) > rank(G(0)).

We defined G(z) = RH(z), so Im(G(z)) C Im(R). Since
Im(G(0)) = Im(R), then Im(G(z)) C Im(G(0)). Knowing
rank(G(z)) > rank(G(0)), we conclude Im(G(z)) = Im(G(0)).

|

B. Guaranteed Reachable Set

Let us denote a set Deon C Cr, (R™;R™) x Cp (R™;R™*™)
as the set of all pairs f and G consistent with Assumptions 1 and 2.

We want to underapproximate the set of reachable states given solely
the knowledge of Dcop. We first define the (forward) reachable set

RIC (T, o) = {1:C (t;20) | w - [0,T) — Ut € [0,T7}. where
@1 (20) denotes the controlled trajectory of the system M ( Q)
with control signal u and (;SU’G(O; x0) =0.
Let T' > 0. We describe the guaranteed reachable set (GRS) as:
rROT,0)= () RICo0). 2)
(f,G) € Deon

The GRS describes the set of all states that are reachable by any
system consistent with our knowledge of the system dynamics.

Problem 1: Determine or underapproximate the GRS.

To solve Problem 1, we first represent ordinary differential equa-
tions with control inputs as an ordinary differential inclusion (ODI).
We discuss doing so in Section III. Given the assumed knowledge of
the system dynamics, we develop underapproximations to the right
hand side of this inclusion. In Section IV, we use these underapprox-
imations to derive two control-affine systems whose reachable sets
are subsets of RY(T,0).

1. GUARANTEED VELOCITIES

We follow the classical approach of interpreting ordinary dif-
ferential equations with control inputs as inclusions [18]-[20]. In
this section, we formally define the guaranteed velocity set of
an unknown control system and determine analytically computable
underapproximations of such a set.

A. Guaranteed Velocity Set
We define the available velocity set of the system M( f, G) at state

x by Vi = f(z) + G(z)U, and introduce the following ODI:

& € Ve = f(x) + G(x)U, z(0) = xo. 3)

If a trajectory ¢(-;zo) satisfies (3), then it obviously serves as a
solution to the control system (1) for an admissible control input, and
vice versa. We use the classical notion of a solution of ODE (1) and
ODI (3) — as defined, e.g., in [25] — where the relevant equation
or inclusion needs to hold for almost every t. Given Assumption 2,
set Vzo, = Vo is known. The goal of this section is to provide an
underapproximation for set V., using sets Dcon, and Vy. We first
define the guaranteed velocity set (GVS) below:

Vi= () f@)+G@UC V. @
(f.G) € Deon

The GVS Vg is the set of all velocities that can be taken by all
systems consistent with the assumed knowledge of the dynamics. Let
us consider the following ODI:

i€V, x=0. ®)
If Vg(T;wo = (), we will consider by convention that the trajectory
of (5) ceases to exist at time 7. The following proposition then holds
directly from (2) and (4).

Proposition 1: Let T > 0. If a trajectory ¢ : [0,400) — R"
satisfies (5) at all times ¢ < T, then ¢(T) € RY(T,0).

Proposition 1, proved in [1], implies that the reachable set of (5)
is a subset of RY(T,0). As briefly described in [1], these sets are
not necessarily equal; establishing conditions for the equality of the
reachable set of (5) and RY (T,0) is an open problem for future
work.



TAHA SHAFA AND MELKIOR ORNIK: REACHABILITY OF NONLINEAR SYSTEMS WITH UNKNOWN DYNAMICS 3

B. Ball Underapproximation

Proposition 1 motivates us to underapproximate RY (T,0) by
determining the reachable set of (5). We start by examining the
geometry of the ODI. Given z € R", our previous assumptions show
that

{(f(2),G()) | (f,G) € Deon} = ©)
(B" (£(0); Lgll=l)) N Im(R)) x (B"*™(G(0); Lg|l=l]) N Imm(R)),

where Im(R), Imm(R), f(0), G(0), Ly and Lg are known by
Assumption 2. Let us indeed prove (6). By the definition of f
and G from (1) and Assumptions 1 and 2, it is obvious that
{(f(2),G(2)) | (f,G) € Deon} € (B™(f(0); Ly|ll)) N Im(R)) x
(B™*™(G(0); Lg||z||) NImm(R)). To show equality, let us say that
z is fixed and p is in the ball B" (f(0); Ly ||z|)NIm(R). Let us define
a function f : R™ — R so that f(y) = pH”y”” + £(0) ( - %) =
(p Hg”o)) lly|l + f(0). Clearly, le—F(O)ll e FOI i o Lipschitz constant of f,
and, given that ||p — f(0)|| < Lf‘|:c\| Ly is a Lipschitz constant of
fas well, so f € Deon; we note that p = f (). A similar argument
can be made for G : R™ — R™*™  proving (6).

From (6), Vg is an intersection of infinitely many ellipsoids
a + BU, where a € B"(f(0);Ls[lz||) N Im(R) and B €
B (G(0); Lg||z||) N Imm(R). An intersection of infinitely many
ellipsoids is generally not a geometrically simple object [26]. Thus,
we will determine an underapproximation of Va,g . Our approach will
be to implicitly exploit convexity of v% and underapproximate the
distance of the boundary of set V¢ from 0 in every direction. In
Theorem 1, we calculate one such underapproximation.

Theorem 1: Let U, L fs and L¢ be defined as above. Let z € R™
satisfy (Ly + Lg)llz]| < |G(0)T]|~L. Define

Vg = B (£(0): GO |~ Lyllz] - Lell2l) N Im(G(0)). ()

Then, VY C VY. R R
Proof: et 0\ éyep,,, /(%) = f(0) + G(x)U equals Vg —

7(0). On the other hand, N G‘)EDmnf(x) — f(0) + G(=)U =
m(f,@)eﬁconf(w) + G(z)U, where Deor, is defined the same as
before, just with the assumption that f(0) = 0. Thus, we can assume
without loss of generality that f(0) = 0.

Let d € Im(G(0)) = Im(R) such that ||d|| = 1. We will prove
that if |k| < [|G(0)T]| =% — Ly|lz|| = Lg/||z||, then equation

k-d= f(z)+ G(z)u, )
where (f,G) € Deon, admits a solution w € U =B (0;1).

We subtract f(x) from both sides of (8). Since f(z) € Im(R)
by Assumption 1 and kd € Im(R) by definition, then kd — f(z) €
Im(R). Also, Im(G(z)) = Im(R) by Lemma 1. Hence, there exists a
vector 4 € R™ such that kd— f () = G(z)u. Now, through the rank-
nullity theorem [24], we can write @ = u+ug where u € Im(G ()
and uy € Ker(G(z)). Thus, G(z)a = G(z)(u + ug) = G(z)u;
hence, kd — f(z) = G(z)u.

We multiply both 51des of kd — f(z) = G’( )u on the left by
G(z)T, resulting in G(z)T(kd — f(z)) = G(2)!G(z)u. The term
G(z)TG(z)u results in the pI‘O_]CCthIl of u onto the Im(G(xz)T)
[24]. Given that u € Im(G(z)T), by definition of a projection,
G(zx)(kd — f(x)) = G(z)'G(x)u = u. Thus, if we prove that:

1G (@) (k- d— f(2)] <1, ©)

we will have |lu|| <1, i.e., u € Y. Utilizing ||d|| = 1 along with the
product and triangle inequalities for matrices, we arrive at (10) and

(11):

I1G(@) (k- d— f@)]| < kG d| + |G@) f@)], @0
< KNG@)T |+ 1G@)TIf @) an

From (11) it follows that the set of all k that satisfy |k| 1G(z)T| +
IG(@)t]]|f(z)]| < 1is a subset of all k that satisfy (9). In other
words, if:

k| < 1G(@) 7" = I1f @),

then  satisfies (9). We note |G (x)T|| # 0 from the definition of the
Moore-Penrose pseudoinverse and because G(z) # 0 from Lemma 1.

By Weyl’s inequality for singular values [23] and Assumption 2,
we obtain the following inequalities: ||G/(z)T|| ™! > [|G(0)T|| 7! —
Le|z| and || f(z)| < Ly||z||. Thus, since we assumed that k
satisfies:

(12)

k| < GO = Lyllzll — Lelzl, (13)

it satisfies ().
|
We slightly generalize Theorem 1 by also considering all £ which
satisfy (L + La)||z]l = |G(0 )TH_l-
Corollary I: If ||z|| = M, then £(0) € VY.

Lf-‘rLG
Proof: Let us take x such that ||z|| = ey~
. Lf+LG

GO —*
such that ||z;]| < ”L(f%

Theorem 1 shows that for all 2, there exists a u; € U such that
f(0) = f(x;) + G(z;)u;. Thus, because I/ is a compact set, there
exists a subsequence up, , Up,, ... Which converges to some u* € U
[27]. Since xp, — x and up, — u*, we have f(0) = f(zp,) +
G(ap; )up;, — f(x) + G(z)u*. Therefore, f(0) = f(x) + G(x)u*

]

and a sequence

X1, T2, .. and ||z;|| — x as ¢ — oo.

C. Advanced Convex Underapproximation
(el

Li+Lg
l_)wg guaranteed to be a subset of VZJ . Such a set is a projection
of a ball onto Im(G(0)). However, there are instances, particularly
when singular values of G(0) are far apart, where a ball may be
a poor underapprox1mat10n of V . Consequently, we derive a new
underapproximated set Vx in Theorem 2.

Theorem 2: Let U, Lf, and Lg be defined as above. Let p = 1
if rank(G(0)) = m = n, u = /2 if rank(G(0)) = min(m, n) and
m#mn, p= 1+2\/g if rank(G(0)) < min(m,n), and let x satisfy
(Ly + La)llel < IGO)T |~ 1

For all z that satisfy ||z| < , we now have a set

VY = {f(0) +kd | ||d]| = 1,d € Im(R), 0 <k < K(d)}
GO~ = Lall=ll — Ly |||
GO I(IGO)T~* = L=l +uHG(o>f||LGHx||(’l4

s.t. K(d) =

then 12? - Vg .

Proof: As in Theorem 1, we will show that for k£ and d given
in (14), equation (8) admits a solution u € U. Like in the proof
of Theorem 1, without loss of generality, we set f(0) = 0. From
inequality (10), it follows that the set of all k£ that satisfy

k|| G() T dl| + |G @) T[11f ()] < 1 (15)

is a subset of all k that satisfy (9). The term ||G(z)"|| is the inverse
of the smallest nonzero singular value of G(z). Therefore, using
Weyl’s inequality for singular values [23], we have ||G(z)'|| <



(IG(0)| "' =L¢||lz||)~*. By Assumption 2, we also have || f(z)|| <
Ly|lz||. We conclude that the set of all k that satisfy

Lyl
IGO)T71 = Lg ]| —
is a subset of all k that satisfy (9).

Next, we bound [|G(z)'d]| using the product and triangle inequal-
ities for matrices:

k|G () d]| + (16)

G (@) d]| < IGO) d] + [[(G(x)" - G(0)T)d]

< |G(O) d| + [|G(=)t — G(O)T].

By Lemma 1, Im(G(0)) = Im(é(:c)) Therefore, we can apply the
inequality |G(z)" — G(0)T|| < ul|G @) IIGO)TIG(2) - GO

(T}leorem 3.3 in [28]). We can now rewrite the upper bound on
|G () d]:

a7

I1G()td|l < |GO) dl|+ul|G)TIGO) |G(a) - GO)]. (18)

We again use [|G(z)"[| < (|G(0)T| ™" — Lg||=|))~!. According
to Weyl’s inequality for singular values, |G (z) — G(0)|| < L¢||z||-
Therefore, all |G (x)"d| that satisfy (18) will also satisfy

A pl|G(0)T || L |||
IG() dll < 1G0)Td] + - .9
1GO)T71 — La|=|
By plugging (19) into (16), we obtain all k that satisfy
GO Lg|=||
K (1c0o)yta) + 2
i (oo +
L
4 T ﬂle <
IGO)T]|~! — Lel|=|l
ie.,
IGO)T~! = Lalz| — Lyl
k| < - . (20)
1GO)Td|(IG0)] =t = Lellzl) + pllGO)T | La )
also satisfy (9). |

By rewriting the denominator of K(d) in Theorem 2 as
IGOTI=H GO ] + (uIGO)T] = 1GO) dl) Le ||, we can
easily see that it cannot be negative since 1 > 1 and [|G(0)T]| >
|G(0)Td||. We now compare the derived sets V¥ and V¢ in Corollary
2.

Corollary 2: For invertible matrices G(0), V¥ C VY.

Proof: Given the numerator of K (d) in (14) is identical t0 the
radius of f/mg derived in Theorem 1, v,% is contained within Vx if
and only if

GO alGO) ™ — Lallzl) + plGO) T Lalz] < 1. @D)

Inequality (21) is obviously equivalent to

IGO) (GO — Lallzl) < 1 - ulGO) | Lelz]. @2)
Dividing by [|G(0)T]| 7! = Lg||| > 0 results in
- Iz

ic©d) < 1GQIA = mIGO ILglzl) 5

1= |GO)T| L]l

We see in the case of invertible G(0) where p = 1, (23) reduces to
G(0)Td|| < ||G(0)T|), which holds true for all d such that ||d|| = 1.
Therefore, for invertible G(0), VY is contained within V. [

Our calculations result in two derived sets. Corollary 2 proves
V¢ C V¥ when G(0) is invertible. Hence, Theorem 2 provides a

Fig. 1. Velocity sets plotted for a system with f(0) = {g} G(0) =

Wl = vad Ly = Le =
represent the boundaries of the available velocity sets for all systems
such that (£, &) € Deon. The intersection of these sets produces the
guaranteed velocity set V& (white). Underapproximations V¢ (bounded
in red) and V¢ (bounded in black) are both contained in V.

1. The blue curves

better underapproximation than the one obtained in [1], under the
assumptions present in that paper. Figure 1 illustrates a simple ex-
ample of the GVS V and its approximations obtained by Theorems
1 and 2. Consistent with the results of Corollary 2 smce G(0) is
invertible, Vg - Vg However, for general cases, Z V We can
take the union of both of sets to determine a larger set of guaranteed
velocities. We denote such a set by

V9 =vguvy.

In Section IV, we show how f/g can be used to identify a polygon
that can generate a control system with solutions that satisfy (1).

IV. REACHABLE SET

In this section, we aim to utilize the derived sets 173 and vmg to
determine a set of trajectories guaranteed to satisfy (1). First, we use
fig to identify a polygon contained within ng .

Lemma 2: Let S(z) be any finite set of points on the boundary
of V. Let P(S(x)) be a convex hull of S(z). Every solution to
& € P(S(z)) is a solution to (1).

Proof: The guaranteed velocity set is the intersection of an
infinitely many ellipsoids; such a set is convex [26]. Given f/f - Vg. ,
we know P(S(z)) C VY. n

While Lemma 2 permits us to chose any set of points on the bound-
ary of f/f as S(x), in the remainder of the paper, we will choose the
points along the singular vectors of G(0). We do so by noting from
inequality (20) that the smaller the magnitude of ||G/(0)'d||, the larger
the corresponding K (d). The smallest magnitude of ||G(0)Td]| for
ld]] = 1 will be obtained when d is the singular vector corresponding
to the largest singular value of G(0) [24]. We choose other points
to be along other singular vectors because of the orthogonality of
singular vectors.

Theorem 1 shows that the reachable set of

ieVy,

z(0) = =, 24)

is a subset of Rg(T, z0), while Lemma 2 shows the same for the
reachable set of

(25)
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A. Underapproximated Control System — Ball
Analogous to the interpretation of dynamics (1) as an ODI (3),

inclusion (24) can be interpreted as a control system

& =a+g(lzl)s, (26)

on { |||z < |G(0)1||/(Ls+Lg)}, witha = f(0), @ € B"(0; 1)
Im(G(O)) and where g(s) = |G(0)T|™! — (L; + Lg)s if s <
GO~/ (Le + - L). We thus obtain the following result.

Theorem 3: Let R(T, zo) be defined as the reachable set of (26)
at time 7. Then, R(T,zo) C RY (T, zo).

Proof: Proposition 1 and Theorem 1 show that R(T,zg) C
RY(T, zo). n

We can expand on Theorem 3 using control system (26) to help
determine the geometric structure of Q(T, xp).

Corollary 3: Consider a control system of the form & = (b —
¢|lz||)u defined on some ball B C R"™, such that z € R", b,c € R,
and u € U. Then, the reachable set R(T,xzg) is a ball in B.

Proof: Let z = Rx such that R € R™*"™ is any orthonormal
matrix. Obviously, 2 = R& = (b — c||z|)Ru. Note that ||Rz|| =
llz]| = ||z]|, thus we have zZ = (b+ ¢||z||) Ru. Similarly, let Ru = v.
= (b — ¢||z||)v such that
v € U, so the reachable set of © = (b — ¢||z||)u is invariant to all
rotations. Any rotation of any point on any trajectory of the original
system is thus itself on some other trajectory of the original system.
Hence, as the trajectories are continuous, the reachable set of the
original system is a ball. |

z(0) = xo,

B. Underapproximated Control System — Polygon

Analogous to Theorem 3, we can define ’IA%(T7 xo) as the reachable
set of (25) at time T', and again 7A2(T7 zg) C RY (T, z9). We follow
the method above and interpret inclusion (25) as a control system
defined in Theorem 4.

Theorem 4: Let s € R and g(s) = ||G(0)T| ™ — (Lg + Ly)s,
a(s) = |GO)T| 7 =Lgs, B(s) = pul|G(0)T||Les with p as defined
in Theorem 2. Let ULV be the singular value decomposition of
G(0) where U = [n1, ..., nn]. Letr = rank(G(O)g' we define A(s) €
R™*™ such that diag(A(s)) = max{ s),0}
and \;;(s) = 0 elsewhere.

The reachable set of (25) equals the reachable set of the control
system

)
s@naomiraE 9

i =a+UA(le])u,  2(0) =,

on {z | |lz] < |GO)]/(Ls + L)}, with a = f(0) and u €
{u ] flull < 1} If R(T, xo) denotes the reachable set of (27), then
R(T z0) C RY (T, zo).

Proof: Let ||z|| < ||G(0 )T||/(Lf + Lg)}. By Theorem 1, the
boundary of V¥ lies at a magnitude of g(||z||) along any direction
in Im(G(0)) from f(0). By Theorem 2, the boundary of V¢ lies
st & magnitude of ]}/ (a(l=1DIG(O) i + 5(I]) song the
direction 7; from f(0), for all i < r. Since V¢ = VI U VY,
the vertex of S(z) in the direction 7; thus has a magnitude of
Ai(||z|]), for ¢ < r. In the direction of n; for ¢ > r, the distance
of boundary points for both 175 and 173 from f(0) equals 0, as
both of these sets are contained in Im(G(0)). By its construction in
Lemma 2, polygon P(S(z)) is thus given by f(0) + UA(]|z]))@
where Q = {u | |Jull1 < 1}. ]

We note that the dynamics of (26) and (27) are entirely known.
Finding R(T,xo) and R(T,xo) becomes a standard problem of
determining the reachable set of a nonlinear control system [29].
As we will show in the subsequent section, there is not guarantee

27
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Fig. 2. True reachable set (blue) with the underapproximations R(T,0)
(red) and R (T, 0) (green) numerically calculated for T = 0.1 seconds.

that either (26) or (27) generally creates a larger reachable set than
the other.

In order to exploit previous work on computing reachable sets in
R"™, we can follow methods outlined in [1], where (24) and (25)
can be contlnuously extended to all R by defining VY = {f(0)}
and P(S(z)) = {f(0)} for all = such that [|z| > 7‘G(OILHG .
Although there is no method to analytically determine t[i exact
reachable set for all nonlinear systems, existing level set methods
find the reachable set by determining the viscosity solution to
Hamilton-Jacobi equations [11], [30]. Additional methods create an
overapproximation of the true reachable set by utilizing trajectory
piecewise linearized models [31] or set propagation techniques [32],
[33], [34]. For simplicity, in our numerical examples, we approximate
the true reachable set using a Monte Carlo method by solving ODEs
(26) and (27) with random time-varying inputs.

V. NUMERICAL EXAMPLES

We consider three examples. The first is an example of an
underactuated system consistent with Assumptions 1 and 2. The
second shows novel theory applied to an academic three-dimensional
nonlinear system with initial conditions similar to the system briefly
discussed in Section III, shown in Figure 1. This illustrates an exam-
ple where Theorem 1 results in a poorer underapproximation of the
true reachable set, while utilizing R (7T, z) generates a significantly
better underapproximation. The third example is a control system
with decoupled quadrocoptor dynamics motivated by the scenario of
landing a damaged UAV safely [3], [4]. The goal is to determine a
reachable set of pitch and roll velocities in order to help stabilize the
UAV for landing.

As mentioned at the end of Section IV, we calculate the reachable
sets by numerically solving all ordinary differential equations using
the standard ode45 function in MATLAB which implements a Runge-
Kutta method [35] with a variable time step for efficient computation.
Doing so avoids limitations of current numerical solvers such as
CORA [36] that often rely on set propagation methods to calculate
the reachable set and face issues as ||z| is not differentiable at
0. Numerical results are supported through analytical means and
theoretical results derived in Sections II, III, and IV.

A. Underactuated Nonlinear System

This example exhibits an instance where a more relaxed set
of constraints allows for the calculation of an underapproximated
reachable set for underactuated systems, which is not possible using
the work of [1]. System dynamics
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104+ z1 + (10 4 z1)ug
(4 + z2)ug
10 4+ 21 + (10 + z1)ug

(28)

where
10 + 21 10 + x4 0
flx(t) = 0 |, G@@®)= 0 4+ xo
10 4+ 1 104+ x4 0

produce the GRS show in Figure 2. Results are consistent with theory
presented in preceding sections, i.e., the computed sets R(T, o)
and 7A2(T7 xp) are indeed approximations of the system’s reachable
set. As mentioned previously, there is no guarantee that R(T, z0) C

R(T, zp) due to the polygonal structure of (27), and in this particular
case neither reachable set is a subset of the other.

B. Three-Dimensional Nonlinear System

We consider a system with dynamics

10u1 + (3 — z2)u2

#(t) = f@(t) + Gla()u(t) = | 2—e)ur+Tuz |, (29)
(2.5 + x3)us
where
0 10 3 —x2 0
fz@®) =10, G@)=|2-21 7 0 :
0 0 0 2543

with the primary interest of finding the reachable set of z; and x2.
Taking the Jacobian of f(x) and G(z) yields Ly = Lg = 1 to be
acceptable Lipschitz constants. For simplicity, we set g = 0. We
remind the reader that f and G are assumed to be unknown, and
only Ly and L¢ are known.

Results from Figure 3, showing the projection of the reachable
sets to the first two coordinates, illustrate that (i) R(T,0) and
7%(T, 0) are indeed underapproximations of the true reachable set,
(i) R(T, 0) produces a better underapproximation than R(T’, 0), and
(iii) the accuracy of the underapproximations increases as 7' — O.
Phenomenon (i) validates the results from Theorems 3 and 4. The
singular value decomposition of G(0) yields o1 & 11.43, o2 =~ 5.6,
and o3 = 2.5. Because of the large difference between o1 and o3, the
true reachable set is not accurately represented by the ball R(T),0).
On the other hand, in Theorem 4 we derive control system (27)
using f/acg , which more accurately represents the complex shape of the
GVS. Thus, the resulting set ’IA%(T7 0) is larger along singular vectors
pertaining to larger singular values, contributing to result (ii).

True reachable set (blue) with the underapproximations R(T,0) (red) and R(T,0) (green) numerically calculated for T €

Lastly, Figure 3 illustrates how the underapproximations R(T’,0)
and R(T,0) become asymptotically perfect as T — 0. As T —
oo, although comparatively worse, these underapproximations yield
progressively larger reachable sets. In the next example, we apply this
novel theory to decoupled quadrocopter dynamics to help safely land
a damaged UAV. In this case, we will show that, in contrast to the
above example, the polygonal approximation obtained by Theorem
4 produces worse results than the ball approximation derived from
Theorem 3.

C. Decoupled Quadrocopter Dymamics

We show that the novel theory can be applied to a real system
by example of quadrocopter dynamics. We consider the objective
of adjusting the quadrocopter’s pitch and roll velocities. For a safe
landing, a UAV ideally needs these velocities to equal O [37].
Given the physical dimensions of a standard UAV, the yaw rate is
inconsequential due to the symmetrical shape of the quadrocopter.
We consider the scenario where a UAV collides with an obstacle,
which would result in unwanted high velocity rotations. This scenario
translates to a problem of reachability: given initial conditions of
roll and pitch rates, we aim to determine if it is possible to reach
p = q = 0 without knowing the system’s dynamics after the collision.

The dynamics of a standard UAV are modeled in [38]. The model
is comprised of a solid sphere with mass M = 1kg and radius R =
0.1m, which represents the central frame; it is connected to four point
masses m = 0.1kg, each representing one of four propellers at an
equidistant length of [ = 0.5m away from the central sphere. The
dynamics are shown below:

. Jy—Jz 1

P 7.2 e Tf'w

q| = | =R | 7T (30)
; Jo—J 1

r JoTupg T

where states p, ¢, and 7 correspond to velocities pertaining to the roll
rate, pitch rate, and yaw rate, respectively, and

_ 2MR?
5

Inputs 74, 79, and Ty, pertain to the applied torque that directly
affects the roll, pitch, and yaw velocities. As J; = Jy, the yaw
rate can directly be changed by increasing the control action to 7y,
without affecting the roll or pitch rates. Including additional states,
such as the roll, pitch, and yaw angles and translational position,
would move the model beyond the requirements of Assumption 1.
Applying the theory to a dynamic structure such as this is a subject
for future work.

_ 2MR?
5

Ju +20%m, Jy=Jo, Js + 4%m.
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Fig. 4. True reachable set (blue) with the underapproximations R (T, 0) (red) and 7i(T, 0) (green) numerically calculated for T' € {0.05,0.25,1}

seconds.

We note the system dynamics in (30) are not globally Lipschitz
continuous. However, as previously discussed, given the yaw rate
can be directly changed by increasing control action to 7, without
affecting other states, we can trivially reduce 7 to 0, causing r to be
some constant; we arbitrarily set g = 7/2. Let the initial conditions
after collision be pg = 15, go = 10 radians per second. Since novel
theoretical results are derived under the assumption xg = 0, we
perform a simple coordinate transformation; let p = p — 15 and
G = q — 10 such that pg = gg = 0. Obviously, p = p and § = g,

thus resulting in the new system
1
T 7o
+ | T )
T, 70
with initial conditions

107 (Jy—Jz)

— 57— —8.73 7
157r(2Jiz—Jw):| ~ { } , G(0) = [JI
— 2,

Jy—Jz) /-
%(q+ 10)
w(Jz—Jz

27,

31
) (5 + 15) 1)

—
= O

13.09 7,

o | |
such that J; = Jy, = 0.009, and ||G(0)T||~! ~ 111.11. The new
dynamics (31) are Lipschitz continuous; we overapproximate the
Lipschitz bounds to be Ly = 1 and Lg = 1 to account for overly
conservative knowledge about the rate of change of the dynamics.

As in the previous sections, we bound inputs u € ]E32(0; 1) and
denote z = [p, (j]T € R? as the system states. The blue shape in
Figure 4 illustrates the true reachable set of the states pertaining to
the roll and pitch velocities, in (p,q) coordinates, plotted at 7' €
{0.05,0.25,1} seconds. Given the structure of control systems (26)
and (27), it is trivial to see that if point (—pg, —qo) is contained
within either (T, 0) or R(T’, 0), then we know there exists a control
v which guarantees velocities p and g can be reduced to 0, regardless
of the true system dynamics.

Next, we apply novel theory to solve for R(T, 0), resulting in the
set shown in red in Figure 4, which is proven in Sections III and
IV to be a guaranteed underapproximation of the GRS. We begin
by calculating V¥ = B(£(0); |G(O)T|™" = (Lf + La)|xl) =
B2(£(0); 111.11 — 2||||). Control system (26) thus equals

(32)

_ [-873]  [11111 - 2]ja]|
13.09 0

0 u
111.11 — 2|z

such that u € B2(0; 1). Its reachable set is R(T,0).

Lastly, we consider control system (27) to determine R(T 0).
Since G(0) is invertible, we know from Corollary 2 that V¥ C V.
Thus, when determining the diagonal entries of A(||z||), we know

from Theorem 4 that \;(||z|) = 9(|lz

a(HI”)HG(O)Trh||+B(”m||) . Since

G(0) is diagonal, we know the matrix of left singular vectors U
equals identity. System (27) therefore equals

i {—8.73} . [)\1(Hx|\)

13.09 0
such that ||ull; < 1.

The same methods for determining the previous two reachable sets
numerically can be applied to find (T, 0). Figure 4 displays R(T’, 0)
for the roll and pitch velocities p and . Notice that [|G(0) n;| is
identical for all 4. Thus, \;(||z||) = 111.11 —2||z|| for all ¢, which is
identical to the diagonal terms in control system (32). Since system
(27) considers [lul[1 < 1 and system (26) considers u € B2(0; 1), for
this particular control system, R(T,0) C R(T,0). The final result
is a reachable set R(T, 0) denoted in green in Figure 4. It naturally
resembles a polyhedron as 7" — 0, with edges that curve as time
increases.

According to the numerical results in Figure 4, roll and pitch
velocities with initial conditions pg = 15, gop = 10 radians per
second can be reduced to 0 in no more than 0.25 seconds because
(—15,—10) is contained in R(0.25,0). In fact, for any points that
lie within R(T’,0), we can guarantee there exists a control signal
which reaches these states within time 7. For time T = 0.05, we
see that neither the true reachable set, nor the underapproximations
reach (—15,—10), with R(T,0) becoming asymptotically perfect
as T' — 0. Conversely, at time 7" = 1, the theory provides larger,
generally worse underapproximations where the true reachable set,
along with R(T’,0) and R(T’,0), clearly include (—15, —10).

Unlike in the first numerical example, set R(7,0) is larger than
R(T,0). Naturally, in general, computing R(T', 0)UR(T, 0) provides
the best approximation of RY (T,0) available from our theory.

0 u
Xa(llzl)

VI. CONCLUSION AND FUTURE WORK

This paper provides a novel approach to underapproximating the
reachable set of a system with unknown dynamics. By assuming the
nonlinear control-affine system structure and exploiting solely the
knowledge of system dynamics at a single point and — possibly
conservative — Lipschitz bounds on the rate of change, we are
able to determine two underapproximations R (T, ) and R(T, z)
that are guaranteed to be contained within the guaranteed reachable
set Rg(T, z0). Both underapproximations rely on an intermediate
approximation of the GRS by an ODI = € Vg , where the right
hand side is a set of guaranteed velocities for the unknown nonlinear
control-affine system. The two underapproximations differ by the
shape of the right hand side set, i.e., the approx1mat10n of Vmg is
either determined by balls Vg or a different shape Vx that more
closely resembles the shape of an intersection of an infinite many
ellipsoids.



A natural area of future work is to focus on creating a larger set
underapproximating the GVS. One possibility is to consider approx-
imations in norms other than the spectral norm considered in this
paper. For example, potentially by bounding the perturbations of the
unknown system’s dynamics with the Frobenius norm instead of the
spectral norm, we could utilize the Mirsky Inequality [23] to produce
new underapproximations of the GVS. However, there is currently
no guarantee that such a bound would produce a more accurate
underapproximation of the GVS. Another possibility includes the
utilization of semi-infinite programming [39], [40] to determine the
maximal extent of Vg in every direction. Utilizing first- and second-
order optimality conditions, the problem could potentially be reduced
locally to one with finitely many constraints; similarly, given the
convex structure of the GRS, additional optimization techniques such
as duality may help further simplify the problem.

Another approach to obtaining a larger underapproximation of
the GVS is to increase the knowledge of the system dynamics. In
other words, making additional assumptions on the structure of the
dynamics could also help determine a larger underapproximation of
the GVS by reducing the size of the set of systems consistent with
prior knowledge about system dynamics. One option is to utilize
knowledge from multiple system runs instead of solely dynamics at
a single point. Expanding on theoretical results derived from this
paper by incorporated additional knowledge consistent with a large
class of systems could potentially result in substantial progress for
the development of sophisticated safety critical systems.
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