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On the Minimax Reachability of Target Sets
and Target Tubes™

Sur la capacité minimax d’atteindre des séries de buts et des enveloppes de buts

Uber die Minimax-Erreichbarkeit von Zielmengen und Ziel-“Schliuchen”
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D. P. BERTSEKAS and 1. B. RHODESY

Feedback control of uncertain dynamic systems may be derived such that the system
state is guaranteed to lie in a specified region of state space in the presence of input

and observation disturbances.

Summary—This paper is concerned with the closed-loop
control of discrete-time systems in the presence of un-
certainty. The uncertainty may arise as disturbances in the
system dynamics, disturbances corrupting the output
measurements or incomplete knowledge of the initial state
of the system. In all cases, the uncertain quantities are
assumed unknown except that they lie in given sets. Atten-
tion is first given to the problem of driving the system state
at the final time into a prescribed target set under the worst
possible combination of disturbances. This is then extended
to the problem of keeping the entire state trajectory in a
given target “tube”. Necessary and sufficient conditions for
reachability of a target set and a target tube are given in
the case where the system state can be measured exactly,
while sufficient conditions for reachability are given for the
case when only disturbance corrupted output measurements
are available. An algorithm is given for the efficient con-
struction of ellipsoidal approximations to the sets involved,
and it is shown that this algorithm leads to linear control
laws, The application of the results in this paper to pursuit-
evasion games is also discussed.

1. INTRODUCTION
Two BAsIC problems of deterministic control theory
are the controllability problem and the tracking
(servomechanism) problem. The controllability
problem is concerned with transferring the state of
a system from an initial state-time pair to a final
state-time pair. The tracking problem is concerned
with keeping the state-trajectory of the system
“sufficiently close” to a prescribed target trajectory.
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In this paper we examine two analogs of these
problems that arise when there is uncertainty about
the system state. This uncertainty can arise because
the initial state of the system is not known exactly
and because the system dynamics and output
measurements are corrupted by “noise”’. The most
commonly used approach in such situations is to
model the initial state as a random vector and the
dynamics and measurement noises as additive
stochastic processes. Under these circumstances, a
possible analog to the controllability problem is to
reach a target set at the final time with a prescribed
probability or degree of certainty, while the usually-
adopted analog of the tracking problem is to take
an “on-the-average” approach and minimize the
expectation of a cost functional that depends quad-
ratically on the deviation between the system trajec-
tory and the target trajectory. If the system is
linear, the initial state is a Gaussian random vector,
the system and measurement noises are independent
white Gaussian processes, and the cost functional
also depends quadratically on the control, the
solution to this latter problem is given by the well-
known “separation theorem” or ‘“‘certainty equiva-
lence principle”.

The approach adopted in this paper differs from
those outlined above in two ways. First, the un-
certainties are not modelled as random vectors or
stochastic processes but instead are considered un-
known except for the fact that they belong to
prescribed, bounded sets. Secondly we adopt a
pessimistic “worst case” or ‘‘guaranteed per-
formance” approach rather than the usual “on the
average” approach. Thus we seek the controller
that achieves the desired objective or performs
“best” under the worst possible combination of
disturbances. Under these conditions, the most
natural analog of the deterministic controllability
problem is that of steering the system state into a
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desired final target set under all possible combina-
tions of disturbances. In other words, we would like
to design a controller in such a way as to guarantee
that the final state of the system will always lic in a
prescribed target set despite the presence of un-
certainties. Ina similar vein, a natural analog of the
tracking problem under these same conditions is to
keep the entire state trajectory in a “tube™ contain-
ing the desired trajectory under all possible dis-
turbances. We refer to these two problems as those
of “‘reachability of a target set’ and “‘reachability
of a target tube’”. Possible applications of these

two problems can be expected in the control of

systems under uncertainty where either a set
description of the uncertain quantities is more
readily available than a probabilistic one, or where
specified tolerances must be met with certainty.
Such applications can be found in diversc areas
such as in chemical process control cases where the
state must stay in a specified region of the state
space, or equivalently avoid a critical region, in
aerospace applications such as a spacecraft reentry
problem, etc.

The modelling of uncertainties and disturbances
as quantities that are unknown except that they
belong to prescribed sets and the adoption of a
“worst case” or “guaranteed performance’ view-
point have both received attention before. The
state estimation problem under these circumstances
has recently been discussed in Refs. [[-5]. The
reachability of target sets and target tubes with
open-loop controls has been discussed in Ref. [6],
and certain aspects of the problem of the reach-
ability of a target set by a closed loop controller
using perfect measurements of the system state have
been discussed in Refs. [1] and [7] in the framework
of a more general problem. In this paper we
examine the reachability of target sets and target
tubes by closed-loop controllers utilizing either
perfect measurements of the system state or im-
perfect measurements of the system output. In
order to achieve the greatest transparency of the
ideas involved, we concentrate our attention on
discrete-time dynamic systems.

In section 2 we consider the reachability of a
target set by the state of a non-linear discrete
dynamic system using perfect measurements of the
state. We give a geometric necessary and sufficient
condition for existence of control laws that achieve
reachability, and characterize these control laws.
These results are extended in section 3 to the case
of reachability of a target tube. In section 4 we
consider the special case of a linear system and
obtain some additional results and characteriza-
tions. We also give a polyhedral algorithm and an
ellipsoidal approximation algorithm for construc-
tion of sets required for the solution and show that
the ellipsoidal algorithm provides linear control

laws.  Section 5 contains a discussion o soiw
relationships between the reachability problem and
the “‘unknown but bounded™ state estimation
problem that has been examined in Refs. [1--3]. i
section 6 we consider the reachability problems for
the case where the controller has available only
imperfect measurements of the system output and
give some sufficient conditions for reachability that
make use of an estimator derived by the authors
[5]. Finally in section 7 we point out applications
of our results to pursuit evasion games.

2. REACHABILITY OF A TARGET SET

In this section we examine the reachability of a
target set when perfect measurements of the system
state are available to the controller at each time.

Problem 1. Consider the discrete-time dynamic
system

X 1 =E (X, )+ g(w)) (h

where x,eX=R" (n-dimensional Euclidian space)
is the state vector, the control vector u, is to be
selected from a prescribed set U,< R", the dis-
turbance vector w, is assumed to belong to a given
bounded set W, < RP, the initial state x, is assumed
to be contained in a given set X,=R", and the
functions f,: R"xR"—R" and g,: R"-R" are
known. Given a prescribed target set Xy< R™,
find, if it exists, a closed-loop control law u(-, <)
mapping the pairs (x;, A)into U, k=0, I ..., N—1.
with the property that at time N the state xy of the
closed-loop system

1§94

X1 = H(Xp u(xy, K))+g(wy) (

is contained in X, for all possible disturbance
sequences W,eW,, k=0,1,..., N—1, and all pos-
sible initial states x €X,.

Definition 1. The target set Xy is reachable at
time N from the initial state set X, at time O if there
exists at least one solution to Problem 1.

We remark that if we are to guarantee reach-
ability of the target set under all possible dis-
turbances, we must take the pessimistic viewpoint
of attributing to “Nature” the role of an active
adversary who selects the disturbances at each
time in such a way as to try to prevent the system
from reaching the target set. Thus we may view the

* If an output target set Yn is to be reached where the
output is yx=hg (xx) we define the state target set

Xy={xy: yn=hy(xy), ye¥y}

and reduce the problem to the same form as above.
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reachability problem as one in which there is the
following sequence of 2N+ 1 “moves” alternating
between the Controller and Nature, each move
being made with full knowledge of the outcomes of
prior selections: (1) Nature selects x, (2) Controller
selects u, (3) Nature selects w, (4) Controller selects
uy, ... (2N) Controller selects uy.,, 2N+1)
Nature selects wy_;. One can, in fact, convert this
problem to a sequential minimax control problem
defining by a cost function J to be the characteristic
function of the complement of the set X, i.e.

_ )0 xyeXy
J(XN)_{I XN¢XN

where the Controller attempts to minimize J and
Nature attempts to maximize it. This minimax
control problem can be solved by dynamic program-
ming [7]; in fact, the results of this section con-
stitute a geometric solution to the dynamic pro-
gramming algorithm, although we prefer to argue
directly rather than view the problem as one of
finding min max J.

In order for xy="Ffy _{(Xy_ 1, Uy_ 1)+ Eyv_1(Wy_1)
to be an element of Xy for all wy_,eWy_, it is
clearly and trivially both necessary and sufficient
that fy_ ;(xy-1, Uy— ) belong to the effective target
set Ey defined by

Ey={zeR": [z+gy_ (Wy_)]eXy, VWy_€Wy_;}
€)

which, in turn, will occur for some uy_,€Uy_, if
and only if x, _, is an element of the updated target
set Ty_, defined by

Ty-y={zeR": fy_,(z, uy_)eEy
for some uy_€Uy_1}. (4

Thus, as a direct consequence of the definitions of
Ey and Ty_, in (3) and (4), we have the following
three equivalent statements:

(1) xyeXy for all wy_,eWy_; and some
uy_;€Uy_, if and only if xy_,€Ty_,, where xy_,
is the state at time N—1.

(2) Xy is reachable at time N from all points of a
given set Xy _, of states xy_, at time N—1 if and
only if Xy_,=Ty_;.

(3) Xy is reachable at time N from the set X, at
time 0 if and only if Ty _ | is reachable at time N —1
from X, at time 0.

It should be noted that the set Ey and conse-
quently the set Ty_, may be empty in which case
the problem does not have a solution, i.e. the target
set Xy is not reachable from any state xy_, at time
N—1 and hence from the initial condition set X,,.

The reachability problem from time 0 to time N
has thus been reduced to a reachability problem

from time O to time N—1. Repeated application of
the same procedure leads to a complete solution of
the problem of reachability of a target set. To this
end, define recursively the effective target set E; ,
at the time k41 and the updated target set T, at
time k by [c.f. equations (3) and (4)]

Ep i ={zeR": [z+g,(Ww)eT, 4, VWeW,} (5

Tk={Z€R": fk(z, uk)EE“. 1s

for some w,eU,} (6)
Ty=Xy. &)

We then have by repeated application of statements
(2) or (3) above.

Proposition 1. The target set Xy is reachable at
time N from all points of a given set X, of states x,
at time k if and only if X, = T, where T, is defined
recursively by equations (5-7). In particular, the
target set Xy is reachable from X, at time 0 if and
only if X, T,,.

It is easily seen that, as long as the target set Xy
is reachable at time N from at least one state at
time 0, the recursive 1elations (5-7) define two
“tubes” in R"xJy where Jy=1{0, 1,2, ..., N} is
the (ordered) set of integers from O to N. These
tubes are the (updated) target tube T defined by

T={(zx, K)eR" xJy: 2Ty, k=0, 1,2, ..., N}
)

and the effective target tube E defined by

E={(z,, K)eR"xJy: 7,eE, k=1,2,...,N}. (9)

These two tubes can be viewed as the sequence
{Ty Ty, ..., Ty_y, Ty} of updated target sets and
the sequence {E,, E,, ..., Ey} of effective target
sets. Recalling that a necessary and sufficient for
Xy to be reachable at time N from the state x;, or
singleton set {x,}, at time k is that x,€T,, we see
that once the state x, at time k is inside the target
tube T the controller can force the subsequent
states Xy 1> Xg42s - - - » Xy—-1, Xy to stay inside the
target tube, regardless of the subsequent dis-
turbances. Thus, in particular, the final state xy
will be inside the target set Xy. The controller
accomplishes this by driving fi(x,, u,) inside E;
so that x; , ; =1,(x;, u,) + g (w,) will lie in T, for
all possible disturbances w,&W,. This is illustrated
in Fig. 1. Conversely, if x,¢T,, then Nature can
force the subsequent states X;., - .., Xy—1, Xy tO
remain outside the target tube regardless of the
permissible control action taken by the controller,
and thus, in particular, the final state xy can be
forced to lie outside the target set Xy.
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FiG. 1. Schematic presentation of the action of the
controller (C) to counteract disturbances (N) for
reachability of a target set.

It should be noted that both tubes are pre-
computable and can in principle be stored by the
controller. By making additional assumptions such
as linearity of the system and convexity, closure or
compactness of the sets U, W, and Xy, one can
obtain a better characterization of the tubes, and
devise algorithms for their construction. This will
be discussed in Section 4.

3. REACHABILITY OF A TARGET TUBE

Consider now the extension of the problem con-
sidered in the preceding section where, instead of
being concerned only that the final state of the
system lie in the prescribed target set, we desire to
keep the entire system trajectory within a “tube”
in R"xJy. In other words, at each time
K=0,1,..., N, the system state is to be contained
in a given set X,.

Problem 2. Consider the discrete-time dynamic
system

Xp 41 =H(Xp u) +g(wy) (h

where, as in Problem [, x,eR”, weU,cR",
w,eW, = R? and x.€X,. Given a prescribed target
“tube” {(X,, k): k=1,2, ..., N}cR"xJy, find
(if it exists) a closed-loop control law u(-, +) map-
ping the pairs (x;, k) into U, k=0,1,2,... . N—1,
with the property that ateach time k=1, 2, . . ., N,
the state x, of the closed-loop system

Xpo 1 =X u(xy, k) +gi(Wy) (2)

is contained in X, for all possible disturbance

sequences w,eW,, k=0,1,2, ..., N—1, and all
possible initial states x,eX,.
Definition 2. The target tube
(X, K), k=1,2,..., N}cR" xJy

is reachable from the initial state set X, at time 0
if there exists at least one solution to Problem 2.

We remark that by taking all of the sets X, but
Xy to be the entire space R", Problem 2 reduces
directly to Problem 1. The results in this section are
simply generalizations of those given in the pre-
ceding section in the sense that we now take into
account the requirement that x; be in X, for all k.

It was shown in the preceding section that a
necessary and sufficient condition for xy to be
contained in Xy for all wy_,eWy_, and some
uy.,€Uy_ is that xy_, lie in the updated target
set Ty_, defined by equations (3) and (4). Thus in
order for x, to be contained in Xy and for x,_to
be contained in X, _,, it is clearly both necessary
and sufficient that x, _, be contained in both T, _,
and Xy_,, i.e. that xy_; be an element of the
modified target set X% _, at time N —1 defined by

Xy-1=Ty-nXy_, (10)

where N denotes set intersection. We therefore
have that the tube {X;, X,, ..., Xy, Xy} is
reachable from X, at time O if and only if the tube
{Xy, X5,..., Xy_,, X¥_y} is reachable from X,
at time 0. In other words, the reachability of a
tube of length N has been reduced to the reach-
ability of a tube of length ¥—1. Repeated applica-
tion of this procedure leads to a complete solution
of the target tube reachability problem. To this
end we define recursively the effective target set
E¥, [ at time k+1, the updated target set TF at
time k and the modified target set X} at time k as
follows, c.f. equations (5-7) and (10).

Ef, = {zeR": [z+ gk(Wk)]EX;: 10 YWEeW, ) (11)

Ty ={zeR": f(z, u)eEy,, for some w,eU,}
(12)

Xy =TynX, (13)

X3 =Xy. (14)

We then have by repeated application of these
definitions, c.f. Proposition 1:
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Proposition 2. The target tube
(X}, 7); j=k+1,..., N}

is reachable from state x, at time & if and only if
xeTy. In particular, the target tube {(X;, j):
j=1,2,..., N} is reachable from X, at time O if
and only il X, =T?.

Tn a manner analogous to the introduction of the
updated target tube and the effective target tube in
equations (8) and (9) of the preceding section, we
can view the recursive equations (11-14) as defining
two tubes in R" x Jy. These are the modified target
tube M and the effective target tube E* defined via
equations (11-14) by

M={(X}, k); k=1,2,...,N} (1%

E*={(E}, k); k=1,2,..., N} (16)

which, alternatively, may be viewed as the sequences
X1, X3, ..., X§_., Xy} and {E}, E%, ..., E}}
of modified and effective target sets. Once the
system state lies inside the modified target tube M
the controller can force the remaining state trajec-
tory to lie in the desired target tube

{(Xk’ k)a k=1> 2, e N}

regardless of disturbances. The controller accom-
plishes this by choosing the control at each time in
such a way that f,(x,, w,) lies inside E*,  ;, so that
X, +16Xp4, for all w,eW,. This is iilustrated in
Fig. 2. Conversely, if the initial state x, does not
lie in T¥, then nature can select the disturbances in
such a way that at least part of the trajectory lies
outside the desired target tube

(X, k): k=1,2,...,N).

tar

SNl

X7

Tugef tube Xy

Modified

| Effective
target tube

It should be noted that, as is to be expected with
a dynamic programming type of procedure, the
effective and modified target tubes E* and M must
be precalculated ““backwards in time” and stored.
Exact and approximate procedures for doing this
efficiently are discussed in subsequent sections.

4. SOME RESULTS FOR LINEAR SYSTEMS
We now specialize the results of the past two
sections to the case of a linear system

Xg+1 =Akxk+Bkuk+Gka. (17)
For such systems the updated target sets T¥, can
be defined as the inverse image under A, of the set
(E* . +(=BUp}, ie.

T¢=Ag HES  +(~BUY} (18)
where +denotes the vector sum of the indicated
sets. Note that equation (18) involves set operations
only, and Tf is defined even if the matrix A, is not
invertible.

If X, is a convex set it is easy to prove that the
effective target set EY defined by

E:;={z: (Z+ GN—IWN—l)eXN, VwN—'IEWN—l}

is also convex. Itis not necessary that the set Wy _,
be convex. In fact, the set E} remains unchanged
if W, _, is replaced by its convex hull. If Uy_, and
X, _; are also convex then the updated and modified
target sets T%_,, and X}_, are convex since the
operations in equation (18) and set intersection
preserve convexity. It is also clear that if all given
sets are compact. the sets E* ., T*, and
X,k =0, 1,2, ..., N-1, are closed If, in,

_— s XN

TNt ———

F1G. 2. Schematic presentation of the action of the
controller (C) to counteract disturbances (N) for
reachability of a target tube.
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addition, A, is invertible for all k=0, 1, ..., N—1
and all given sets are compact, the sets Ef, {, T;",
Xy are also compact. We summarize the above in
the following proposition:

Proposition 3. If, for the linear system (17), the
sets X1, U, are convex forall k=0,1,. .., N—1,
the sets E*,, ;, Ty, and X} defined by equations (11)
through (14) are also convex for all &, If, for all
k=0,1,2, ..., N—1, the sets X, ,;, W, and U,
are compact the sets Ef,,, T, and X*, are
closed; if, in addition, the sets X;,;, W, and U,
are compact and A, is invertible for all k=0, I, 2,

.., N—1, the sets Ef,;, T} and X} are also
compact for all k.

For practical applications it is important that the
sets B, T, and X can be characterized by a
finite set of numbers. This is possible when X, and
U, are convex polyhedra. The sets Ef, , T and
X are in this case polyhedra and thus can be
characterized by a finite number of bounding hyper-
planes. Given the state x, at time k. the set of all
controls u, with the property that

(Apxy+ Beu)eE, 4

may, under these circumstances, be determined
on-line as the intersection of two polyhedra. Any
control in this intersection is then adequate for
reachability. The relevant algorithm is presented
in Appendix 1.

If, however, the given sets are not polyhedra, the
exact calculation of the modified target tube and
the effective target tube given by equations (15) and
(16) becomes extremely difficult if not infeasible.
One can, however, conceive of constructing
approximations to these tubes that are charac-
terized by a finite set of numbers. One such
possibility is to approximate the sets X;, E;f and T}
for each k=0, 1,2, ..., N, by ellipsoids X, = X},
E.cEf and T, < T}, since an ellipsoid is completely
characterized by its center and a weighting matrix.
In this way, the modified target tube M, for
example, is approximated by an internal tube
M={X,, k): k=1,.... N} whose cross-sections
are ellipsoids. Then, in order for the original
target tube {(X;, k): k=1, 2, ..., N} to be
reachable from the set X, at time 0, it is sufficient
(but not necessary) that X_c T,. This approxima-
tion approach is the basis for the ellipsoidal
approximation algorithm given in Appendix 2,
where results on the optimal control of linear
systems with quadratic cost criteria are used not
only to derive ellipsoidal tubes but also to derive
control laws that are linear.

5. RELATION BETWEEN CONTROL AND
ESTIMATION ALGORITHMS

It is well-known that there exists a duality
between certain stochastic estimation problems

[10] and a class of optimal control problems
involving a quadratic cost functional [9]. Amongst
other effects, this duality is reflected in the fact that
in both cases the solution involves Riccati equa-
tions. In the estimation case the solution of the
Riccati equation is propagated forward in time,
while in the control case the solution is propagated
backwards in time. The state estimation problem
for linear discrete systems where all the uncertain
quantities are described by their membership in
given sets has been considered by several authors
[1-5]. The objective is to estimate the set of all
feasible states compatible with the measurements
received. Consider the case of the linear discrete
system:

Ny =FX +Gew, (19)
with measurements of the form
Zk:Hkxk+vk (20)

where x;eR" with the initial condition x, contained
in a given set X, < R”, and the input disturbance w,
and the measurement disturbance v, are, at each
time k=1, 2, ... N, contained in known sets
W,cR? and V,cR™. Then it can be shown [1],
[2] that the set Sy, of possible states x, consistent
with a given set of measurements z,, ..., z, is
given recursively by the following equations

Skie=Skp- 101Xz, —HiX, €V, } (2n
Setk=1=Fx 1Sk 1jh-1 + G- Wy, (22)
Soj0=X,. (23)

One would like to identify a “‘duality” relation
between an estimation problem of this form and a
control problem. Such a relation exists and, as we
now show, the corresponding control problem is
the special case of the target tube reachability
problem considered in section 3 where there is no
input noise.

Consider the special case of Problem 2 in which
the system is linear and there is no disturbance in
the dynamics, so that the system equation is

Xk+1 :Akxk+Bkuk. (24)
In this case we wish to keep the system output
Yie=Cix, (25)

in a prescribed tube {(Y,, k); k=1,2,..., N} in
R"xJy by the appropriate choice of control law
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u( -, ) mapping the pairs (x,, k) into U,. Using the
results of Sections 3 and 4, the corresponding
modified target tube XF is generated by the
algorithm:

Xr=Tin{x Cx Y} (26)
T =A ' X +H(—ACBYU, (27)

where
X ={Xy Cyxye¥y}. (28)

It can be seen that the algorithm (26-28) for the
control problem and the algorithm (21-23) for the
estimation problem have certain similarities. They
both have at each step a set intersection involving
the output, and a vector sum operation involving
the input. The solution in the case of the estimation
algorithm propagates forward in time whereas in
the case of the control algorithm it propagates
backwards. In fact, if between the systems (19),
(20) and (24), (25) we make the identifications

Foo =Agl; G = —AyLBy
Hy=-Cy_, (29)

and between the corresponding sets involved we
make the identifications

X =Xy={z:CyzeYy}; V,=Yy_i:
W_1=Uy_; (30)

then, for the special case where the measurements
are zero (i.e. z,= ... =12,=0), we have by com-
paring (21-23) with (26-28),

Se=X*y_, k=0,...,N—-1. (3D

Thus one can solve the control problem by
solving the corresponding estimation problem. In
either case, of course, one would like to be able to
describe the sets Sy, or X7 by finite sets of numbers,
which will be true for ellipsoids, for example.
However, even if all the given sets are ellipsoids,
the sets Sy, are not ellipsoids. On the other hand,
lower and upper ellipsoidal bounds S, ;, S, (S,
=8, x=8S,, «) can be calculated for them [5]. For the
control problem, the lower bound is of interest as it
provides suboptimal modified target sets, and it
can form the basis for an ellipsoidal algorithm
(with an appropriate modification for the input
noise case) for construction of a suboptimal solu-
tion. However, this same algorithm can be studied
best by relating the tube problem to the linear
quadratic optimal control problem as is done in

Appendix 2, where, in addition, linear control laws
are derived.

The identifications in equations (29) and (30) are
not the ones usually associated with the duality
between the stochastic fiitering problem and the
linear system-quadratic cost optimal control prob-
lem. We remark, however, that the “usual” identi-
fications are not the only ones for which the
Riccati equations, or their discrete-time counter-
parts, associated with the filtering problem and the
regulator problem can be put in one-one corres-
pondence; an alternative set of identifications is
given by equation (29). In fact, let P, be the
solution at time k of the discrete Riccati equation
corresponding to the optimal control problem
involving system (24) and the quadratic cost
functional

N-1
Jul=xy¥ " 'xy+ ) [XICRCx;+uiQ; 'u]

0

and, with ¥, R,, Q, positive definite matrices, let
L(k|k) be the solution at time k of the Riccati
equation corresponding to the stochastic filtering
problem involving the system (19), (20) with
Xo» Wi_ys Vg (k=1, ... N) being independent
Gaussian random vectors with zero mean and
covariances equal to¥, Qu_,_;, Ry_, respectively.
Then, by writing the corresponding equations, it
can be easily seen that under the identifications (29)
we have

2—1(klk)=PN—'k (k——_—O,..‘,N).

6. REACHABILITY WITH IMPERFECT
STATE INFORMATION

In this section we extend Problems | and 2 to
the case where, instead of having perfect knowledge
of the system state, the controller has access only
to noise-corrupted measurements of the system
output. The objective is again either to drive the
state X of the system inside a target set at the final
time or to keep the entire state trajectory inside a
target tube. We restrict attention to linear systems
and assume that all given sets are convex. Within
these assumptions, we derive sufficient conditions
for reachability. The complete solution of the
problem is given in principle by Dynamic Program-
ming [!{]; however, it appears to involve all the
complexities of a dual control problem [8]. We
depart here from a strict Dynamic Programming
formulation. For this reason the conditions we
derive are only sufficient and the results are weaker
than those of the perfect information case.

Consider again the linear system

X1 =AX + B +Gyw, (32)
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where now the controller has available only
measurements of the form

Zk=Ckxk+Vk (33)

and the observation noise vectors v, are known
to belong to given bounded sets V,. Assume that
the sets W,, V. and X, are the ellipsoids

. ’ -1
Wi={w.: w,Q; 'w,<I}
Vk={Vk: V,:R,Ilvkgl}

on {x(): (xo— un)l‘l’_ 1(X0-— ua) <l } (34)

where Q,, R, and ¥ are positive definite matrices
and p, is a known n-vector.

Given at time k& the measurements z,, ..., z,
and the prior controls u,, . . ., u,_, the controller
can in principle estimate the set of possible states
x, compatible with the measurements. Unfortu-
nately, however, this set is not easily characterized
or computed in practice; on the other hand, an
eliipsoidal bound to it can readily be calculated.
We give the relevant algorithm below in Proposition
4, the proof of which can be found in Ref. [5]. This
algorithm is formally identical to a stochastic
Kalman estimator in modified form and bears
close relation to an algorithm due to SCHWEPPE
(2, 3]. However, it has important advantages over
the latter as the resulting estimator is linear, has
precomputable gains and as time approaches
infinity, it converges to a time-invariant filter.
Since the effect of a known control can be super-
imposed, we give the algorithm assuming u, =0.

Proposition 4. An ellipsoidal estimate set (k)
which contains the set of possible states x, of the
system (32) compatible with observed measure-
ments z,, . . ., Z, is given by:

Qk)= {x; 1 (X, — K=" (k[k)(x, —&p) < | = 5%(k) }
(35)

where the center X,eR" of the ellipsoid is given
recursively by

X1 = AR+ pry  Z(k+ llk'*‘ 1y
Chs le_+11(zk+1 —-Crr14X)  (36)

the nxn weighting matrix X(k|k) of the ellipsoid
1s given recursively by

Z(k|l)=[(1—p)E~ Yklk—1)
+0GROICH ! (37)

2(k|k— D=(1—B ) Ao Tk~ 1]k — DA,
+ B G- 1 Qu- 1 G-y (38)

and the scalar term §%(k) is given by

IRy =(1 =P N1 = p)d2 k= 1) +34z,) (39
where
0% (z) = (2 — CyAp - 1 84— ) [(1 = p) " C E(k [k
—DCi+ o0 'Rz~ CLA - &4 1)
(40)

The initial conditions are:

Ro=Hg» £(0j0)=¥, S0)=0 (41)
while f,_, and p,, k=1,..., N, are arbitrary
parameters with 0<f,_, <1 and O<p,<1.

It can be seen that the weighting matrix Z(k[k)
of the estimate ellipsoid is precomputable and that
the lengths of its axes are proportional to the
square root of the term [l —&%(k)] which depends
via equations (39) and (40), on the particular
measurements received. Since 6%(k)>0, one can
always precompute (except for the center) the
largest possible estimate set

Q,={x,: (xk—)“(k)’Evl(k]k)(x,‘—i,‘)s1}. (42)

Returning now to the reachability problem, we
assume that the controller has available an esti-
mator that gives at each time k the ellipsoidal
estimate set (42) as described by its center R,
which is computed on-line via (36), and its weighting
matrix E(klk), which may be either precomputed
and stored or computed on-line. Furthermore, we
restrict attention to control laws u(-, ) that map
the pairs (&;, k) to U,. We have thus assumed that
the control process may be separated from the
estimation process. We now proceed to derive
sufficient conditions for reachability of a target
tube {(X,, k): k=1,2, ..., N}cR"xJy. The
approach we will follow is to reduce the target tube
reachability problem with imperfect information
to a target tube problem with perfect information,
a problem that can be solved using the results of
Sections 2, 3 and 4. This reduction is achieved by
shifting emphasis from the reachability of a target
tube by the system szate x, to the reachability of a
different target tube by the state estimate X, a
process that is possible because, once X, is known,
the system state is guaranteed to lie within the set
Q, defined by equation (42). In fact, suppose we
define the ellipsoid S, k=1, 2, ..., N, to be the
estimate ellipsoid (42) translated to have its center
at the origin, i.e.

Si={z: 2Z '(k|k)z<1}. (43)

Notice that S is precomputable. Then it is clear
that if the state estimate %, is known then the set



On the minimax reachability of target sets and target tubes 241

of possible system states is contained in the ellipsoid
&, +Sy, which is merely the estimate set (42). Con-
versely, in order for the system state x, to lie for
all k in the given target tube

(X, k): k=1,2,..., N},

it is sufficient that the state estimate &, lies for all &
in the tube {(X, k): k=1,..., N} where the
sets X, are defined as

K= {z: K +2)EX,, VzeS, ). (44)

Now, substitution of equations (32) and (33)
into (36) shows that the estimate %, is generated
recursively by

Ri+1=ArR+ B +d, (45)
where the lumped disturbance d, is given by

dy=L;;; Cii 1 Au(x— %)
+ L1 Cos 1GeWe+ Ly vy (46)

and the, precomputable, gain matrix L, is given by
L,=pZ(k|)C;R; . (47)

Furthermore, it follows immediately from equation
(46) that d, belongs to the known set

D=Lt 1Co 1 AS+ Ly Gt 1G W+ L Vi
(48)

where S, is defined by equation (43) and the ellip-
soids W, and V,, , are defined in equation (34).

Thus, a sufficient condition for the reachability
of the target tube {(X;, k):k=1,... N} by the
system state x, in the presence of imperfect informa-
tion is that the target tube {(&;, k):k=1,..., N}
defined by equation (44) be reachable by the state
%, of the estimator (45). Since the estimate &, is
generated by the controller and known to him at
each time k, this problem is simply the target tube
reachability problem with perfect information that
was examined in sections 3 and 4.

We summarize the above development by stating
the following problem and its solution:

Problem 3. Consider the discrete system (45)
with the initial condition &,=p, and the target tube
{(Xy, k):k=1, ..., N} given by equation (44).
Find, if it exists, a control law u(-, -) mapping the
pairs (X, k) into U,, k=0, ..., N—1, such that
the state &, of system (45) lies for all k in the target
tube {(Ri, k):k=1,...,N} for all possible
disturbances d,eD,, where the set D, is given for
all k=0, 1,..., N—1 by equation (48).

The solution of Problem 3 can be given using the
results of section 2. Define, analogously to equa-
tions (15), (16) and (17), the effective target set
E*, | at time k+1, and the updated target set T} at
time k

E¥, ={zeR": (z+d)eky, 1, Vd,eD,} (49)

T ={zeR": (Az+Bu)ekl, |

for some u,eU,} (50)
Xr=T*n%, (51)
Xr=Xy. (52)

Then, by Proposition 1, a necessary and sufficient
condition for the existence of a solution to Problem
3 is that &, =p,eT*, where p, is defined in equation
(34). Since existence of a solution of Problem 3 is,
as indicated earlier, sufficient for existence of a
solution to the problem of reachability of the
target tube {(X,, k): k=1,..., N} by the state
x, of a system (32) in the presence of the imperfect
measurements (33), we have the following proposi-
tion:

Proposition 5. A sufficient condition for reach-
ability of the target tube {(X,, k): k=1,..., N}
by the state x, of system (32) from the initial con-
dition set X, is that &, =peT* where the set T*
is defined recursively by equations (49-52).

As in sections 3 and 4, the effective and modified
target sets Ef,, and X} are precomputable via
equations (49-52), and the polyhedral algorithm of
Appendix 1, and the ellipsoidal algorithm of
Appendix 2 are applicable for their calculation.
We also remark that the problem of reachability of
a target set Xy in the presence of the imperfect
measurements (33) can be viewed as the special
case of the problem of reachability of the target
tube {(X,, k): k=1, ..., N} of this section where
we take all of the sets X, but Xy to be the entire
space R".

It should be noted that in the derivation of the
sufficient condition of Proposition S we have made
several weakening assumptions. We have assumed
that the estimate sets available to the controller are
the ellipsoids given by equation (42) whereas in
fact the controller can in principle calculate smaller
estimate sets. In addition, in equations (45-48)
we have assumed that the estimation error (x, —%,)
at time k, can be any vector in the estimate set S,
of equation (43) whereas the set of possible values
of estimation error is a subset of S, which depends
on the previous disturbances w;_,, v;(i=1, ..., k).
Thus it is to be expected that other, possibly
stronger, sufficient conditions besides the one of
Proposition 5 exist. It appears, however, that such
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conditions would require sizable on-line computa-
tions that would make the control scheme im-
practical or even infeasible. On the other hand,
the implementation of a control scheme based on
the sufficient condition of Proposition 5 presents
no more difficulty than the one of the perfect
information case.

7. APPLICATION TO DIFFERENTIAL GAMES

In this section we indicate how, with minor
modifications, the results obtained in previous
sections may be applied to the examination of a
class of differential games. Consider again the
linear discrete-time system

Xi+ 1 =AX+ B+ Gy w, (52)

where in this case we identity the controller selecting
the control w,, k=0, 1, 2,..., N—1, as “the
evader” and the controller selecting w, as “the
pursuer”’. The initial state x, is assumed known to
both controllers, as is the state x, as it evolves in
time. As before, the controllers are constrained to
select control laws u,(-) and w,(-) whose values
lie, respectively, in the prescribed sets U, and W,,
k=0, 1, 2,..., N—1. Consider also a given
escape tube

Te={Xi, k): k=0,1,2,..., N}cR"xJ, (53)
and its complement in R" xJy, the capture tube

Te={Xe, k): k=0,1,2,..., N} =T, (54)

where the bar ~ denotes set complementation. The
objective of the pursuer is to drive the system state
into the capture tube T, while the evader’s objec-
tive is to keep the state outside the capture tube for
all time, i.e. the evader attempts to keep the state
trajectory in the escape tube.

An example where such a problem can arise is
the case of two separate dynamic systems, an
evader

Y+ 1=Dyye+ Euu,
and a pursuer

21 =Fz, +Hyy,

and capture occurs if the states y, and z, are
sufficiently “‘close” for some k. For example,
capture might be considered to occur if

[Cuyi—2)| < forany k=0, 1, ... N.

By making the identifications

D, O
o] a3 7]

and

where

M, =[C\, ~C]

the problem reduces to that stated above.

Returning to the original system (52), it is clear
that, since the objective of the evader is to keep the
state trajectory of the system inside the escape tube
throughout the whole time interval, the problem
from the evader’s viewpoint is simply that of the
reachability of the escape tube T,. This, in turn,
is simply Problem 2 of section 3, where the evader
and pursuer are identified, respectively, with the
controller and nature. Recalling that the target
tube {(X,, k); k=0, I, 2, .... N! is reachable
from state x, at time 0 if and only if x, is an
element of the modified target set X* defined by
equations (11-14), it follows that escape is guaran-
teed for the evader if and only if the initial system
state lies in X*. More generally, the modified
target tube

My={(X¥ k): k=0,1,...,N} (39

defined recursively by (11-14), is the set of all
statetime pairs for which escape is guaranteed.
From the point of view of the pursuer, however,
the problem is different, since for capture to occur
it is sufficient that the trajectory enter the capture
tube only once during the time interval. In other
words, the pursuer is interested in the non-reach-
ability of the escape tube, which occurs if the
trajectory enters the capture tube at least once
during the time interval, rather than reachability of
the capture tube, for which it is demanded that the
entire state trajectory lie in the capture tube.
Furthermore, in order to guwarantee capture, the
pursuer must assume the pessimistic attitude of
“playing first™, in the sense of declaring his strategy
to the evader. In other words, the problem of
guaranteed capture is the problem of non-reach-
ability of the escape tube when the evader chooses
his strategy with knowledge of the pursuer’s
strategy. This is again Problem 2 of section 3 with
the order of selecting controls reversed, i.e. the
sequence of selections is: (1) Pursuer selects w,,.
(2) Evader selects u,, . .., (2N —1) Pursuer selects
Wy, (2N) Evader selects uy_,. In the same way
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that we recursively defined the effective and modi-
fied target sets at each time k via equations (11-14),
we can define their analogs in this case where the
order of selections is reversed, viz.

E¥ =X +(=BUy (56)
Ty ={zeR": Az+GwWeEd |, YWeW,} (57)
X* =X, AT (58)
Xy =Xy (59)

Reachability of the escape tube Tp={(X,, k);
k=0, 1, 2,..., N} from state x, at time 0 with
this reversed order of selections is, clearly by
analogy with proposition 2, equivalent to x,€X}'.
Thus the escape tube Ty is non-reachable, and
therefore capture is guaranteed, from state x, at
time ¢, if and only if x ¢X}’, i.c. x,€X}’ where, as
before, the bar ~ denotes set complementation.
Furthermore, we can view equations (56-59) as
defining a modified target tube

M= {(X}, k): k=0,1,...,N} (60)

whose complement is the set of all state-time pairs
for which capture is guaranteed.

Thus the two modified target tubes M and M
defined by equations (59) and (60) may be viewed
as dividing the trajectory space R"xJy into three
regions, as shown schematically in Fig. 3. The
modified target tube M, is the region from which
escape is guaranteed, the complement M, of the
modified target tube M, is the region from which
capture is guaranteed, and the set of points that
are in neither Mg nor M is the region from which
neither capture nor escape is guaranteed.

/ / s 7 / /7
Region of guaranteed escape

FiG. 3. Schematic presentation of the regions of
guaranteed capture and guaranteed escape in a pusuit-
evasion game.

It is clear that M will be a subset of M since
M, is the set of points in R" xJy from which the
evader can escape capture when he “plays last”
whereas M is the set of points from which the
evader can escape capture when he is in the less
advantageous position of having to play first, i.e.
when he must declare his strategy to the pursuer.
Furthermore, M will in general be a strict subset
of Mg, so that the region M of guaranteed escape
and the region M, of guaranteed capture are in
general disjoint except at time N. This can be seen
by examining the updated target sets Ty., and
T%., at time N—1 defined by equations (11-14)
and (56-59), viz.

* . .
TN—I___{XN—I 3 uN_leUN_l S‘t'va—le“,N—l’

Ay_1Xy— 1 +By_juy_ +Gy_ Wy_;€Xy} (61)

PX_1={Xy_1:VWy_1€Wy_y, uy_ €Uy st

AyoiXy- +By_quy_  + Gy Wy €Xy} (62)

it is clear that in order for Tx_, to equal Tx-,
the order of the phrases “Juy_,eUy_,”" and
“Ywy_,€Wy_,” must be interchangeable, which
is not in general the case.

The three regions in R"xJy of guaranteed
capture, guaranteed escape, and neither guaranteed
capture nor guaranteed escape can be interpreted
profitably in terms of a sequential zero-sum game
involving the system (52) and the cost functional

1 if the evader escapes

J(xy K, u, v)={0 if the evader is captured. (63)

This is simply the characteristic function of the
escape tube (54) in R"xJy. It is clear that the
evader wishes to maximize J and the pursuer wishes
to minimize J.

A moment’s reflection shows that the region of
guaranteed escape is the set of state-time pairs
(x4, k) for which

max min J[x,,k, u, v]
u w

= min max J[x,, k, u, v]=1

w n

i.e. the set of state-time pairs for which the upper
and lower value of the game are both equal to 1.
Similarly, the region of guaranteed capture is the
set of state-time pairs for which

0= max min J[x,, k, u, v]
a w

= min max J[X,, k, u, v].

w a
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The region for which neither capture nor escape
are guaranteed is the set of (x,, k) for which

0= max minJ[x,, k, u, v]

ua w

< min max J{x,, k, u, v}=1

w u

i.e. for which the game has no saddle point in pure
strategies. Under these conditions, one might wish
to proceed in a number of ways. The usual pro-
cedure is to seek a saddle point in mixed strategies.
We do not investigate this situation further in this
paper.

It should be noted that for a constant system
where the sets U,, W,, X, are also constant one
can determine the minimum time for guaranteed
capture from a given initial condition x,. This
minimum time is (N --q) where ¢ is the largest time
index of sets X} that contain x,.

We finally remark that the polyhedral algorithm
of Appendix | is applicable for characterization of
the guaranteed capture and guaranteed escape
tubes when the sets U,, W, and X, are polyhedra
or unions of disjoint and closed polyhedra. In the
particular case where X, =X,=...X,_=X=R"
and the problem is closely related to the target set
reachability problem the computational require-
ments are greatly reduced.

8. CONCLUSIONS

Attention has been given to the problem of the
reachability of a target set or a target tube by the
state of a discrete dynamic system. Necessary and
sufficient conditions for existence of a solution are
given for the case where the state of the system can
be measured exactly, while sufficient conditions for
existence of a solution are given for the case when
only disturbance-corrupted output measurements
are available. Algorithms for implementation of
the relevant control schemes are given for the case
of a linear system; in particular, the ellipsoidal
approximation algorithm given in Appendix 2
leads to linear control laws. It is also shown how
the target tube reachability problem is related to a
class of pursuit-evasion games.

The results reported in this paper can be extended
in several ways. The problems of reachability of a
target set and a target tube for a continuous time
system, and particularly the problem of infinite
time reachability for both discrete and continuous
time systems deserve attention. For this latter
problem some results have been reported in this
paper in connection with the ellipsoidal algorithm
of Appendix 2. However, the infinite time reach-
ability problem is essentially different in structure
from the problems considered in this paper, and it
will be the subject of a forthcoming publication.
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APPENDIX

A polyhedral algorithm for construction of tubes

In this Appendix we consider the problem of
section 4, and we give an algorithm for construction
of the effective and modified target sets E, . . . , Ef,
Xy _1s..., X}, when the sets X,, U, are closed
convex polyhedra, or unions of closed disjoint
convex polyhedra, and the system is linear.

A polyhedron P in R" is characterized by 4 finite
set of vectors {e, ..., e}, the support set, and
the values of its support functional

o(e,|P), . ... oleP)

at these vectors. It is the set of points x satisfying:
<x, ¢,> <a(e|P) for i=1.... k.

We give the following lemmas the proof of
which can be found in Ref. [11].

Lemma A.1. Given a polyhedron P with support
set {e,, ..., e,}, and support functional

a(e,|P), . ... a(e,P)
the polyhedron AP (A4: invertible matrix) has

support set {A""'e,, ..., A "'e,! and values of
support functional

g(A’"le,»[AP)=U(ei'P)s P=1, .0 k.
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Lemma A.2. Given two polyhedra X and Y with
support sets {X,, ..., Xz}, {¥i»...»¥m}» the
vector sum X+ Y is a polyhedron with support set
{X{, .« +s X Y1 - - - ¥} and support functional

o(q|X + Y)=0(q|X)+0(q|Y)

q=Xgp - > X Y1 - o> Yo
Also, the intersection XnY is the polyhedron
bounded by the hyperplanes

<x, g> <min{s(q|X), o(q|Y)}

q=Xq5 .- s Xps ¥Yis oo 25 Y

We also prove the following Proposition:

Proposition A.1. If the polyhedron Xy of the
target tube has support set {e;,...,e,} and
support functional o(e,|Xy), . . ., o(e,Xy) the
effective target set Ej is the polyhedron bounded
by the hyperplanes

<X, > Sa(ei‘XN)_a(GI,V~1eile—l)
i=1,...,k (A.lQ)

where o(*|Wy_;) is the support functional of the
set Wy _,.

Proof. 1f xeEY then
<X, 0> +0(Gy-1q|Wy_,)<0(g|Xy), ¢eR*

and xeP where P is the polyhedron bounded by
the hyperplanes (A.1). Hence, Ef<P. Consider
now the polyhedron P, with support set
{e(, ..., ¢} and support function

O'(eile)'-“o'(G;v— 1ei|WN- 1)

i=1,...,k. Then it is Gy_,Wy.;<P,. Using
Lemma A.2itis P+ P, <X, and hence Gy_;Wy_;
+PcX, which implies PcE}. Hence P=E}.
Q.ED.

We note that it is possible that not all of the
hyperplanes (A.1) are support hyperplanes of E§
and before we proceed with the algorithm the
redundant hyperplanes should be discarded using
linear programming.

After the polyhedron E} is determined, the
modified target set X§_,=Xy_:nAzL,[E¥
+(—By_,Uy_,)] which clearly is a polyhedron,
can be determined using Lemmas A.l, A.2 and
linear programming. We proceed similarly to
determine the remaining polyhedra of the tubes.
It should be noted that the number of support
hyperplanes of the polyhedra tends to increase as
we go towards the initial time, and for high dimen-
sional systems this way involve nontrivial storage

requirements for the controller. On the other hand,
the algorithm does not involve any approximations,
and all computations are done off-line.

APPENDIX 2

An ellipsoidal approximation algorithm for con-
struction of tubes

From the viewpoint of practically implementing
the results of sections 2 through 4, it is clearly
desirable that the effective and modified target sets
be describable by a finite collection of numbers.
Such is the case if, for example, these sets are
ellipsoids. However, even if the system is linear
and the various constraint sets are ellipsoids, these
effective and modified target sets are not ellipsoids.
On the other hand, a possible approach is to
internally approximate these sets by ellipsoids, a
procedure that not only allows us to easily imple-
ment the results of Sections 3 and 4 but, in addition,
leads to control laws that are linear. It should be
noted, however, that by internally approximating
the true modified and effective target sets by ellip-
soids the necessary and sufficient conditions
obtained earlier become only sufficient.

Consider the special case of Problem 2 in which
the system is linear and given by

Xt 1 =AX + B+ Gw,

and the relevant constraint sets are the ellipsoids
described by

X;={zeR": 2C;Ciz<1}
Xy={zeR": z¥z<1}
U={veR™: vVRywv<1}
W, ={veR?: ¥D,y<1}
and the matrices ¥, R, and D, are assumed positive
definite for all k=0,1, ..., N—1.
We first approximate the effective target set Ey

by an ellipsoid. To this end, we state the following
lemma, the proof of which can be found in Ref. [2].

Lemma A.3. Consider two ellipsoids S,, S, with
support functionals a(q|S,)=(q'Qq)?, ¢(q|S,)
=(q'Q,q)*. Their vector sum S, + S, is contained
in the ellipsoid S with support function o(g|S)
={q[7'Q,+(1-H"'Q,lq}*, where B is a free
parameter with 0<f<1.

We seek to internally approximate Ey by an
ellipsoid E¥ —cE}. Hence we must have

EX+Gy_Wy_,cXy.

The support functionals of the ellipsoids Gy - Wy,
and Xy are,

0(‘1|GN—1WN—1)=(‘1'GN— 1Dy1Gy_@)*

and o(qXy)=(q'¥ 'q)*. By Lemma A3 the
relation E}4+Gy_Wy_, <Xy is satisfied if the
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support functional of EY is given by o(q|E}
=(q'Fy 'q)* where

Fil=(1=B ™" =By ' Gy—1 D52 Gy _y).
O<fiy<l. (A.2)
If the given constraint sets are such that E} has a
nonempty interior, then there exists a fy with
O0<fy<l1 such that the matrix Fy of (A.2) is
positive definite and the ellipsoid
EY={z: zFyz<1} (A.3)

is contained in Ej.

The modified target set is now defined, using the
ellipsoid Ef, as the set of points xy_, with the
property that both

Xy 1Cy-1Cyo Xy <1 (A4)
and
Xy=Ay_1Xy-1+By_ uy_ ek}

for some uy_,eUy__, . (A.5)
The second requirement becomes in this case that

xyFyxy<1 for some uy_,
with u}v_lRN_luN_ISI . (A6)
The set of points satisfying both equations (A.4)
and (A.6) clearly contains the set of points with the
property that
Xy-1Cy 1 Cyo Xy
+uy- Ry quy_; +x3Fyxy <1 (A7)
where
Xy=Ay_Xy_1+By_juy_,. (A.8)
By well-known results on the linear quadratic
problem of optimal control, see Ref. [9], the set of

Xy-1 satisfying equations (A.7) and (A.8) is given
by

Xy i={xy_: Xy-1Ky-1Xy-1 <1} (A.9)
where the positive definite matrix Ky_, is given by
the discrete Riccati equation
Ky-, -_—Az'v—~1[F1'v-1

+By_ Ry1By_ ] *Ay_, +Cly_Cy_, . (A.10)
Furthermore, a control law that achieves reach-
ability is
Uy (Xy-1)=—Ry-,

+By_ 1 FaBy_ )7 'By_ FyAy_1Xy.;. (A.11)

If X3_, contains the set G,_,W,_, the subse-
quent effective target set Ey_, is nonempty and
we proceed with similar approximations. If some
effective target set is empty, then the algorithm
breaks down. This, of course, does not imply that
the original target tube is not reachable, since the
approximations make this condition sufficient only.
If one wishes to proceed with the ellipsoidal
algorithm he will have to start with a “larger”
target tube. We summarize the algorithm below:

A suboptimal modified target tube {X¥, .. ., X}!
and effective target tube {EY, ..., E}} are given
recursively by:

Xi={x: xKx, <1} k=1,..., N
Ef={x;: x;Fx, <1} k=1,..., N
where
Fk_l=(1_ﬂk)[Kk_l*ﬁfle—le——llGllc—l]
Koo =A_ [F; +B (RIUBL_T71A -,
+Cn Gy
Ky=vy
and the parameters 8, are such that 0<f, <1 and

the matrices F, are positive definite. A sufficient
condition for reachability is then that the set

%j,":{xo: x K x,<1}
contains X,, where
K,=A)[F/'+B,R"'B']7A,.

Furthermore, a control law that achieves reach-
ability is given by:
u(x)= —(Re+BiFy 4 1 B) ' BiFi s (Aix,.  (A.12)

We remark that another control law that achieves
reachability is the control law with a dead zone
given by equation (A.12) when x;A[F,, Ax,>1
(e. Ax¢Ef, ) and w(x)=0 otherwise. In
certain applications the use of a dead zone can be
particularly beneficial.

Consider now the case where the system is
constant (time-invariant) and the given constraint
sets are constant. Suppose that the algebraic
matrix equation

K=A[1-pK™ ' - g7 (1~ p)GD™'G’
+BR™'B']7IA+C'C

has a positive definite solution K for some 0< <1
for which the matrix

F=(1-pK '-p"'GD 1G]
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is also positive definite. Then if the initial state
belongs to the set X*={x: x’Kx<1}, then the
state of the system can be made to stay indefinitely
in the tube {X*, X* ...} and since X*cX
={x :x’C'Cx<1} infinite time reachability is
achieved. The corresponding linear time-invariant
control law that achieves reachability is

u(x)= —(R+ B'FB) " !B'FAx

and it can have a dead zone if desirable.

The ellipsoidal algorithm presented in this
Appendix has the drawback that the approxima-
tions involved may cause failure of existence of a
solution even when an optimal solution exists. For
this reason specification of “‘larger” target tubes
and ““larger” control sets may be necessary if a
solution is to be achieved. Thus the procedure is
not entirely satisfying. However, in view of the
appeal of the linear control laws, it may prove
useful in at least some practical cases. Also an
important question that requires further con-
sideration concerns the quality of the approxima-
tions involved in the algorithm. Unfortunately, it
appears to be difficult to obtain precise estimates
of the approximation involved and further research
and simulations are required for a more complete
evaluation of the merits and drawbacks of the
algorithm.

Résumé—Cet article se rapporte a4 la commande en boucle
fermée de systémes & temps discret en présence d’incerti-
tudes. L’incertitude peut avoir lieu sous la forme de pertur-
bations dans la dyanmique du systéme, sous la forme de
perturbations faussant les mesures A la sortic ou sous la
forme d’une connaissance incompléte de I'état initial du
systéme. Dans tous les cas, les grandeurs incertaines sont
supposées inconnues sauf leur appartenance 3 des séries
données. L’article considére d’abord le probléme d’amener
I’état du systéme au moment final dans une série préscrite de
buts sous la plus mauvaise combinaison de perturbations.
Ceci est ensuite généralisé au probléme de maintenir toute
la trajectoire de 1’état A I'intérieur d’une “enveloppe” donnée
de buts. L’article donne des conditions nécessaires et
suffisantes pour la capacité d’atteindre une série de buts et
une enveloppe de buts dans le cas ou ’état peut étre mesuré
exactement, tandis que des conditions suffisantes pour cette
capacité d’atteindre sont données lorsque seules des mesures

a la sortie faussées par les perturbations sont disponibles.
L’article donne un algorithme pour la construction efficace
d’approximations elliptiques des séries en question et il est
montré que cet algorithme conduit & des lois linéaires de
commande. L’article discute également des applications de
ces résultats a des jeux de poursuite-fuite.

Zusammenfassung—Die Arbeit befaBt sich mit der Regelung
von diskontinuierlichen Systemen bei Vorhandensein einer
Unbestimmtheit. Sie kann vorliegen in Form von Stdrungen
in der Systemdynamik, von Stdrungen, die die Ausgangs-
messungen filschen oder von unvollstindiger Kenntnis
des Anfangszustandes des Systems. In allen Fillen werden
die unbestimmten GroBen als unbekannt, aber als in gege-
benen Mengen liegend, angenommen. Betrachtet wird
zunichst das Problem der Uberfiihrung des System-zustandes
zur Endzeit in eine vorgeschriebene Zielmenge und zwar bei
der ungiinstigsten Kombination von Stérungen. Dies wird
auf das Problem der Beschrinkung der ganzen Zustands-
trajektorie auf einen gegebenen Ziel-“Schlauch” ausgedehnt.
Notwendige und hinreichende Bedingungen werden fiir den
Fall angegeben, daB der Systemzustand exakt gemessen
werden kann, wihrend hinreichende Bedingungen fiir die
Erreichbarkeit fiir den Fall gegeben werden, wenn lediglich
durch Storungen gefilschte Messungen vorhanden sind.
Angegeben wird ein Algorithmus zur wirksamen Konstruk-
tion von elliptischen Approximationen der enthaltenen Men-
gen. Weiter wird gezeigt, daB dieser Algorithmus zu linearen
Regelungsgesetzen fiihrt. Die Anwendung der hier gewonn-
nenen Ergebnisse auf eine Klasse von Verfolgungsspielen
wird diskutiert,

Pesiome—Hacrosilias Cratesi OTHOCHTCA K YOPABIICHUIO
B 3aMKHYTOM KOHTYpE CHCTEMAaMH C IMCKPETHLIM BPEMEHEM
B NPHCYTCTBHM HeonpelenenHocteh. Heonpenenendocrs
MOXeT AMETh MECTO B CMBICTIE IOMEX B JIMHAMUKE CHCTEMBI,
B CMBICJIE TTOMEX HMCKAXKAIONINX BBHIXOOHBIE M3MEPEHHS HIH
B CMBICTIE HEIOJIHOTO 3HAHMS HAYAJIBLHOIO COCTOSHHSA
cHCTeMBl. Bo BCex clydasx, HEONPEAETCHHBIC BEITHMYMHBI
NpeanonaraloTCsl HEUM3BECTHHIMH 33 MCKJIIOYCHHEM HX
MPUHALIEKHOCTH K ONPEnENCHHBIM panaMm. CraTes pacc-
MaTpPHBAET CHaYalla 33134y OpHABEICHAA COCTOSHHS CHCTEMBI
B KOHEYHBbI! MOMEHT B 3aJJaHHEIH PAA NEJICH NPH HAKXYALIEM
COYCTAHMHE NOMeX. JTO 3ateM 00oOiaercsd x 3amaye nom-
JEPXKaHNA COCTOSIHAA BHYTPH AAHHOM ‘06070uku’’ Leneit.
Craths JaeT HEOOXONEMBbIE MW HOCTATOYHBIE YCIOBHS IJIS
CIOCOGHOCTH HOCTHXEHHMS pafa Weneid B cCllydae Korma
COCTOSIHME MOXET OBITh TOYHO H3MEPEHO, B TO BPEMS KaK
IOCTaTOYHBIE YCIIOBHA OJIt 3TOM CIIOCOOHOCTH HOCTIKCHUA
HAIOTCsS KOTAa MMEIOTCS HAJIALO JIMLIL BHIXOJHBIC H3MEPEHHS
HMCKaXXeHHRIE noMexamH. CraTbsg Ja€T AaJNrOpuT™M Iisf
3} deKTHBHOrO NOCTPOEHMS 3JUIMINTHYECKHX IPHOIMKeHmt
K pacCcMaTphWBacMBIM DPsiaM M IMOKa3plBaeT YTO 3TOT
AJTOPHTM NPHUBOAMT K JIMHCHHHEIM 33aKOHAM YIIpaBJIEHHS.
CraTes Takxe 00CYKIAeT NPUMEHEHHS CBOHX PE3YILTATOB
K MTPaM NpecieoBaHusA U mobera.



