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state is guaranteed to lie in a specified 
and observation disturbances. 

systems may be derived such that the system 
region of state space in the presence of input 

Summary--This paper is concemed with the closed-loop 
control of discrete-time systems in the presence of un- 
certainty. The uncertainty may arise as disturbances in the 
system dynamics, disturbances corrupting the output 
measurements or incomplete knowledge of the initial state 
of the system. In all cases, the uncertain quantities are 
assumed unknown except that they lie in given sets. Atten- 
tion is first given to the problem of driving the system state 
at the final time into a prescribed target set under the worst 
possible combination of disturbances. This is then extended 
to the problem of keeping the entire state trajectory in a 
given target "tube". Necessary and sufficient conditions for 
teachability of a target set and a target tube are given in 
the case where the system state can be measured exactly, 
while sufficient conditions for reachability are given for the 
case when only disturbance corrupted output measurements 
are available. An algorithm is given for the efficient con- 
struction of eUipsoidal approximations to the sets involved, 
and it is shown that this algorithm leads to linear control 
laws, The application of the results in this paper to pursuit- 
evasion games is also discussed. 

1. INTRODUCTION 

TWO BASIC problems of deterministic control theory 
are the controllability problem and the tracking 
(servomechanism) problem. The controllability 
problem is concerned with transferring the state of 
a system from an initial state-time pair to a final 
state-time pair. The tracking problem is concerned 
with keeping the state-trajectory of the system 
"sufficiently dose"  to a prescribed target trajectory. 
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In this paper we examine two analogs of these 
problems that arise when there is uncertainty about 
the system state. This uncertainty can arise because 
the initial state of the system is not known exactly 
and because the system dynamics and output 
measurements are corrupted by "noise". The most 
commonly used approach in such situations is to 
model the initial state as a random vector and the 
dynamics and measurement noises as additive 
stochastic processes. Under these circumstances, a 
possible analog to the controllability problem is to 
reach a target set at the final time with a prescribed 
probability or degree of certainty, while the usually- 
adopted analog of the tracking problem is to take 
an "on-the-average" approach and minimize the 
expectation of a cost functional that depends quad- 
ratically on the deviation between the system trajec- 
tory and the target trajectory. If  the system is 
linear, the initial state is a Gaussian random vector, 
the system and measurement noises are independent 
white Gaussian processes, and the cost functional 
also depends quadratically on the control, the 
solution to this latter problem is given by the well- 
known "separation theorem" or "certainty equiva- 
lence principle". 

The approach adopted in this paper differs from 
those outlined above in two ways. First, the un- 
certainties are not modelled as random vectors or 
stochastic processes but instead are considered un- 
known except for the fact that they belong to 
prescribed, bounded sets. Secondly we adopt a 
pessimistic "worst case" or "guaranteed per- 
formance" approach rather than the usual "on the 
average" approach. Thus we seek the controller 
that achieves the desired objective or performs 
"best" under the worst possible combination of  
disturbances. Under these conditions, the most 
natural analog of the deterministic controllability 
problem is that of steering the system state into a 
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desired final target set under all possible combina- 
tions of disturbances. In other words, we would like 
to design a controller in such a way as to guarantee 
that the final state of the system will al~;ays lie in a 
prescribed target set despite the presence of un- 
certainties. In a similar vein, a natural analog of the 
tracking problem under these same conditions is to 
keep the entire state trajectory in a "tube" vontain- 
ing the desired trajectory under all possible dis- 
turbances. We refer to these two problems as those 
of "teachability of a target set" and "'reachability 
of a target tube". Possible applications of these 
two problems can be expected in the control of 
systems under uncertainty where either a set 
description of the uncertain quantities is more 
readily available than a probabilistic one, or where 
specified tolerances must be met with certainty'. 
Such applications can be found in diverse areas 
such as in chemical process control cases where the 
state must stay in a specified region of the state 
space, or equivalently avoid a critical region, in 
aerospace applications such as a spacecraft reentry 
problem, etc. 

The modelling of uncertainties and disturbances 
as quantities that are unknown except that they 
belong to prescribed sets and the adoption of a 
"worst case" or "guaranteed performance" view- 
point have both received attention before. The 
state estimation problem under these circumstances 
has recently been discussed in Refs. [1-5]. The 
reachability of target sets and target tubes with 
open-loop controls has been discussed in Ref. [6], 
and certain aspects of the problem of the reach- 
ability of a target set by a closed loop controller 
using perfect measurements of the system state have 
been discussed in Refs. [l] and [7] in the framework 
of a more general problem. In this paper we 
examine the reachability of target sets and target 
tubes by closed-loop controllers utilizing either 
perfect measurements of the system state or im- 
perfect measurements of the system output. In 
order to achieve the greatest transparency of the 
ideas involved, we concentrate our attention on 
discrete-time dynamic systems. 

In section 2 we consider the reachability of a 
target set by the state of a non-linear discrete 
dynamic system using perfect measurements of the 
state. We give a geometric necessary and sufficient 
condition for existence of control laws that achieve 
reachability, and characterize these control laws. 
These results are extended in section 3 to the case 
of reachability of a target tube. In section 4 we 
consider the special case of a linear system and 
obtain some additional results and characteriza- 
tions. We also give a polyhedral algorithm and an 
ellipsoidal approximation algorithm for construc- 
tion of sets required for the solution and show that 
the ellipsoidal algorithm provides linear control 

laws. Section 5 c(mtain~ a discu,~.~ion ,~ ~,~,,~: 
relationships between the reachability problem and 
the "unknown but bounded" state cslimalio~ 
problem that has been examined in Refs. [I -5]. i~ 
section 6 we consider the teachability problems lot 
the case where the controller has awfilable only 
imperfect measurements of the system output and 
give some sut~cient conditions for reachability thai 
make use of an estimator derived by the attthors 
[5]. Finally in section 7 ~.e point out applications 
of our results to pursuit evasion games. 

2. REACHABILITY OF A TARGET SET 

In this section we examine the reachability of a 
target set when perfect measurernents of the system 
state are available to the controller at each time. 

Problem 1. Consider the discrete-time dynamic 
system 

x~+ 1 =fk(X> Uk)-+gk(Wk) (1) 

where XkeX=R" (n-dimensional Euclidian space) 
is the state vector, the control vector u~ is to be 
selected from a prescribed set UkcR' ,  the dis- 
turbance vector w k is assumed to belong to a given 
bounded set Wk~ R p, the initial state x o is assumed 
to be contained in a given set X o c R  ", and the 
functions fk: R"xRr-~R r and gk: R"~R" are 
known. Given a prescribed target sel X, jc  R"*, 
find, if it exists, a closed-loop control law u( ' ,  -) 
mapping the pairs (x~, k) into Uk, k =0,  l .... N -  I. 
with the property that at time N the state x~. of the 
closed-loop system 

x ~  l =fk(xk, U(Xk, k))+gk(Wk) (2) 

is contained in X N for all possible disturbance 
sequences WkeWk, k =0, 1 . . . . .  N -  1, and all pos- 
sible initial states XoeX o. 

Definition 1. The target set Xu is reachable at 
time N from the initial state set Xo at time 0 if there 
exists at least one solution to Problem 1. 

We remark that if we are to guarantee reach- 
ability of the target set under all possible dis- 
turbances, we must take the pessimistic viewpoint 
of attributing to "Nature" the role of an active 
adversary who selects the disturbances at each 
time in such a way as to try to prevent the system 
from reaching the target set. Thus we may view the 

* If an output target set Y~v is to be reached where the 
output is y~=h~ (xe) we define the state target set 

XN = {XN : YN =hs(XN), Y~YN} 

and reduce the problem to the same form as above. 
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reachability problem as one in which there is the 
following sequence of 2N+ 1 "moves" alternating 
between the Controller and Nature, each move 
being made with full knowledge of the outcomes of 
prior selections: (1) Nature selects Xo (2) Controller 
selects Uo (3) Nature selects w o (4) Controller selects 
ul . . . .  (2N) Controller selects up_t, ( 2 N +I )  
Nature selects WN- ~. One can, in fact, convert this 
problem to a sequential minimax control problem 
defining by a cost function J to be the characteristic 
function of the complement of the set XN, i.e. 

J(XN)={~ XN~XNXN~XN 

where the Controller attempts to minimize J and 
Nature attempts to maximize it. This minimax 
control problem can be solved by dynamic program- 
ming [7]; in fact, the results of this section con- 
stitute a geometric solution to the dynamic pro- 
gramming algorithm, although we prefer to argue 
directly rather than view the problem as one of 
finding min max J. 

In order for XN=fN_I(XN-I, UN_I)%'gN_I(W N_ 1) 
to be an element of XN for all Wn-leWN-1 it is 
clearly and trivially both necessary and sufficient 
that fu-I(XN-x, UN-J) belong to the effective target 
set E N defined by 

EN= {zeR": [z+gN_I(WN_0]~XN, Vws_I~WN_I} 
(3) 

which, in turn, will occur for some uN-a~Un-1 if 
and only if x N_ 1 is an element of the updated target 
set T N_ 1 defined by 

TN-1 = {z~R": fN-I(Z, UN-1)~EN 
for some uN- I~UN- 1}. (4) 

Thus, as a direct consequence of the definitions of 
EN and TN-x in (3) and (4), we have the following 
three equivalent statements: 

(1) xNeXN for all w~-leWN-1 and some 
UN-IeUN-1 if and only if xN_leTN_ 1, where XN-1 
is the state at time N -  1. 

(2) XN is reachable at time N from all points of a 
given set XN- ~ of states xN- ~ at time N -  1 if and 
only if X N _ 1 c TN- 1. 

(3) Xn is reachable at time N from the set Xo at 
time 0 if and only if Tn -  1 is reachable at t~me N -  1 
from Xo at time 0. 

It should be noted that the set EN and conse- 
quently the set TN-1 may be empty in which case 
the problem does not have a solution, i.e. the target 
set X N is not reachable from any state XN- X at time 
N -  1 and hence from the initial condition set X o. 

The reachability problem from time 0 to time N 
has thus been reduced to a reachability problem 

from time 0 to time N -  1. Repeated application of 
the same procedure leads to a complete solution of 
the problem of reachability of a target set. To this 
end, define recursively the effective target set E k + 1 
at the time k +  1 and the updated target set Tk at 
time k by [c.f. equations (3) and (4)] 

Ek+I = {z~R": [Z+gk(Wk)]~Tk+ 1, VWk~Wk} (5) 

Tk= (z~R": fk(z, Uk)eEk+l, 

for some uk~Uk} (6) 

T N = X N. (7) 

We then have by repeated application of statements 
(2) or (3) above. 

Proposition 1. The target set XN is reachable at 
time N from all points of a given set Xk of states xk 
at time k if and only if X k c Tk where Tk is defined 
recursively by equations (5-7). In particular, the 
target set XN is reachable from Xo at time 0 if and 
only if Xo c T o. 

It is easily seen that, as long as the target set XN 
is reachable at time N from at least one state at 
time 0, the recursive lelations (5-7) define two 
"tubes" in R " x J  N where JN= {0, 1, 2, . . . ,  N} is 
the (ordered) set of integers from 0 to N. These 
tubes are the (updated) target tube T defined by 

T = { ( z r ,  k)~Rn×JN: Zk~Tk, k =0 ,  1, 2 . . . . .  N} 
(8) 

and the effective target tube E defined by 

E =  {(zk, k)eR" x JN: ZkeEk, k = 1, 2 . . . . .  N }. (9) 

These two tubes can be viewed as the sequence 
{To, T1 . . . . .  TN-1, TN} of updated target sets and 
the sequence {El, E2, . . . ,  EN} of effective target 
sets. Recalling that a necessary and sufficient for 
X N to be reachable at time N from the state Xk, or 
singleton set {xk}, at time k is that xkeTk, we see 
that once the state x k at time k is inside the target 
tube T the controller can force the subsequent 
states Xk+ x, Xk+2, . . . ,  X N _ I ,  X N to stay inside the 
target tube, regardless of the subsequent dis- 
turbances. Thus, in particular, the final state XN 
will be inside the target set Xu. The controller 
accompfishes this by driving fk(Xk, Uk) inside Ek+ 1 
so that x k + x = fk(Xk, Ilk)-I-gk(Wk) will lie in T k + 1 for 
all possible disturbances Wk~W k. This is illustrated 
in Fig. 1. Conversely, if xk~Tk ,  then Nature can 
force the subsequent states Xk+l, •. •, XN-t, XN to 
remain outside the target tube regardless of the 
permissible control action taken by the controller, 
and thus, in particular, the final state XN can be 
forced to lie outside the target set XN. 
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FIG. 1. Schematic presentation of the action of the 
controller (C) to counteract disturbances (N) for 

teachability of a target set. 

It should be noted that both tubes are pre- 
computable and can in principle be stored by the 
controller. By making additional assumptions such 
as linearity of the system and convexity, closure or 
compactness of the sets Uk, Wk and XN, one can 
obtain a better characterization of the tubes, and 
devise algorithms for their construction. This will 
be discussed in Section 4. 

3. REACHABILITY OF A TARGET TUBE 

Consider now the extension of the problem con- 
sidered in the preceding section where, instead of 
being concerned only that the final state of the 
system lie in the prescribed target set, we desire to 
keep the entire system trajectory within a " tube" 
in R" × JN. In other words, at each time 
K=0,  l , . . . ,  N, the system state is to be contained 
in a given set Xk. 

Problem 2. Consider the discrete-time dynamic 
system 

xk + ~ = fk(xk, Uk) + g g w 9  (1) 

where, as in Problem I, xkeR", UkelJkCR', 
wk~WkCR p and xo6Xo. Given a prescribed target 
" tube"  {(X k, k): k = l ,  2 . . . . .  N } c R ' X J N ,  find 
( if  it exists) a closed-loop control law u( ", .) map- 
ping the pairs (xk, k) into Uk, k = 0, 1, 2 . . . . .  N -  1, 
with the property that at each time k = I, 2 . . . . .  N, 
the state x k of the closed-loop system 

Xk+ ~ =fk(Xk, U(Xk, k))+gk(Wk) (2) 

is contained in Xk for all possible disturbance 
sequences wk~Wk, k = 0 ,  1, 2 . . . . .  N - 1 ,  and all 
possible initial states XoSXo. 

Definition 2. The target tube 

{(Xk, k), k = l ,  2, . . . , N } c R " x J  N 

is reachable from the initial state set Xo at time 0 
if there exists at least one solution to Problem 2. 

We remark that by taking all of the sets X k but 
X N to be the entire space R", Problem 2 reduces 
directly to Problem 1. The results in this section are 
simply generalizations of those given in the pre- 
ceding section in the sense that we now take into 
account the requirement that Xk be in Xk for all k. 

It was shown in the preceding section that a 
necessary and sufficient condition for XN to be 
contained in Xu for all WN_leWN_ 1 and some 
us- leUN-1 is that xN_ 1 lie in the updated target 
set T N_ l defined by equations (3) and (4). Thus in 
order for XN to be contained in Xu and for XN-lto 
be contained in Xs_ l, it is deafly both necessary 
and sufficient that xN_ t be contained in both Tx-  
and XN-I, i.e. that x,v_l be an element of the 
modified target set X*-~ at time N - l  defined by 

X*_ a = T N -  1 c~XN- 1 (10) 

where ~ denotes set intersection. We therefore 
have that the tube {X1, X2 . . . . .  Xu-I ,  XN} is 
reachable from Xo at time 0 if and only if the tube 
{X1, X2 . . . . .  Xu-2, X*-I} is reachable from Xo 
at time 0. In other words, the reachability of a 
tube of length N has been reduced to the reach- 
ability of a tube of length N -  1. Repeated applica- 
tion of this procedure leads to a complete solution 
of the target tube reachability problem. To this 
end we define recursively the effective target set 
E~'+t at time k + l ,  the updated target set T* at 
time k and the modified target set X~ at time k as 
follows, c.f. equations (5-7) and (10). 

E~+I = {zeRn: [z + gk(Wk)]eX*+l, VwkeWk} (11) 

T * =  {zeR": fk(z, Uk)eE~'+ 1 for some UkeUk} 

t12) 

X~, =Tk nX~ (13) 

X* =XN. (14) 

We then have by repeated application of these 
definitions, c.f. Proposition 1 : 
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Proposition 2. The target tube 

{(Xj, j ) ;  j = k + l  . . . . .  N} 

is reachable from state xk at time k if and only if 
xkeT*. In particular, the target tube {(Xj, j ) :  
j = 1, 2 . . . .  , N} is reachable from Xo at time 0 if 
and only if Xo~T*. 

In a manner analogous to the introduction of the 
updated target tube and the effective target tube in 
equations (8) and (9) of the preceding section, we 
can view the recursive equations (I 1-14) as defining 
two tubes in R" x JN. These are the modified target 
tube M and the effective target tube E* defined via 
equations (1 I-I4) by 

l~l={(X*,k);  k = l , 2  . . . . .  N} (15) 

E* = {(E~', k); k = 1, 2 . . . . .  N} (16) 

which, alternatively, may be viewed as the sequences 
{X*, X* . . . . .  X~_ t, X~} and {E~, E~ . . . . .  E*} 
of modified and effective target sets. Once the 
system state lies inside the modified target tube M 
the controller can force the remaining state trajec- 
tory to lie in the desired target tube 

{(X k,k);  k = l , 2  . . . . .  N} 

regardless of disturbances. The controller accom- 
plishes this by choosing the control at each time in 
such a way that fk(Xk, Uk) lies inside E'k+ 1, so that 
Xk+leX*+~ for all WkSWk. This is illustrated in 
Fig. 2. Conversely, if the initial state x o does not 
lie in T*, then nature can select the disturbances in 
such a way that at least part of the trajectory lies 
outside the desired target tube 

{(Xk, k): k = l , 2  . . . . .  N] .  

It should be noted that, as is to be expected with 
a dynamic programming type of procedure, the 
effective and modified target tubes E* and M must 
be precalculated "backwards in time" and stored. 
Exact and approximate procedures for doing this 
efficiently are discussed in subsequent sections. 

4. SOME RESULTS FOR LINEAR SYSTEMS 

We now specialize the results of the past two 
sections to the case of a linear system 

Xk + l = AkXk + BkUk + Gk Wk" (1 7) 

For such systems the updated target sets T* k can 
be defined as the inverse image under Ak of the set 
{E*k+ ~ + ( - -  BkUk)}, i.e. 

T~< = Ak -1 t~,k'~'*+, + ( - BkU,0} (18) 

where +denotes the vector sum of the indicated 
sets. Note that equation (18) involves set operations 
only, and T* is defined even if the matrix At is not 
invertible. 

If X~ is a convex set it is easy to prove that the 
effective target set E* defined by 

E* =  {z: (z+ G N_ IWN_ I)UXN, VW N- I~WN- i} 

is also convex. It is not necessary that the set W N_ I 
be convex. 111 fact, the set E* remains unchanged 
if WN-1 is replaced by its convex hull. If U N_ ~ and 
XN- 1 are also convex then the updated and modified 
target sets T*_t ,  and X*_I are convex since the 
operations in equation (18) and set intersection 
preserve convexity. It is also clear that if all given 
sets are compact, the sets E 'k+ l, T 'k ,  and 
X~,k =0,  1, 2 . . . .  , N - l ,  are closed If, in, 

/ Target tube X 

c / , ,  2 '  I / 
/ i I , I ! / _  / / I . . . .  / , ' i  ,/1 I / / / / 

x; 

FIG. 2. Schematic presentation of the action of the 
controller (C) to counteract disturbances (N) for 

reachability of a target tube. 



238 D . P .  BERTSEKAS and 1. B. RHODES 

add i t ion ,  A k is invertible for all k = 0 ,  1 . . . . .  N -  l 
and all given sets are compact, the sets Ek+ ~, Tk, 
X~' are also compact. We summarize the above in 
the following proposition: 

Proposition 3. If, for the linear system (17), the 
sets Xk+l, U k are convex for all k = 0 ,  1 . . . . .  N -  1, 
the sets E 'k+ 1, T~', and X* defined by equations (I1) 
through (14) are also convex for all k. If, for all 
k = 0 ,  1, 2 . . . . .  N - I ,  the sets X k ~ ,  W k and Uk 
are compact the sets E*+I, Tk and X*k are 
closed; if, in addition, the sets Xk+ ~, W k and U~ 
are compact and Ak is invertible for all k=O, 1, 2, 
. . . ,  N - I ,  the sets E*+~, T* and X* are also 
compact for all k. 

For practical applications it is important that the 
sets Ek+ 1, T*, and X* can be characterized by a 
finite set of  numbers. This is possible when Xk and 
Uk are convex polyhedra. The sets E*+t, T~' and 
X* are in this case polyhedra and thus can be 
characterized by a finite number of bounding hyper- 
planes. Given the state x k at time k, the set of all 
controls u~ with the property that 

(AkXk + BkUk)~Eg+ 1 

may, under these circumstances, be determined 
on-line as the intersection of two polyhedra. Any 
control in this intersection is then adequate for 
reachability. The relevant algorithm is presented 
in Appendix I. 

If, however, the given sets are not polyhedra, the 
exact calculation of the modified target tube and 
the effective target tube given by equations (15) and 
(16) becomes extremely difficult if not infeasible. 
One can, however, conceive of constructing 
approximations to these tubes that are charac- 
terized by a finite set of  numbers. One such 
possibility is to approximate the sets X*, E* and T~ 
for each K =  0, 1, 2 . . . . .  N, by ellipsoids ~k (::X~9 
]~k C= E~ and ~k C T~*k, since an ellipsoid is completely 
characterized by its center and a weighting matrix. 
In this way, the modified target tube M, for 
example, is approximated by an internal tube 
M = {(i~ k, k) : k = 1 . . . . .  N } whose cross-sections 
are ellipsoids. Then, in order for the original 
target tube {(X~, k): k = l ,  2 . . . . .  N} to be 
reachable from the set Xo at time 0, it is sufficient 
(but not necessary) that Xo= ~o. This approxima- 
tion approach is the basis for the ellipsoidal 
approximation algorithm given in Appendix 2, 
where results on the optimal control of linear 
systems with quadratic cost criteria are used not 
only to derive ellipsoidal tubes but also to derive 
control laws that are linear. 

5. RELATION BETWEEN CONTROL AND 
ESTIMATION ALGORITHMS 

It  is well-known that there exists a duality 
between certain stochastic estimation problems 

[10] and a class of optimal control problems 
involving a quadratic cost functional [9]. Amougst 
other effects, this duality is reflected in the fact that 
in both cases the solution involves Riccati equa- 
tions. In the estimation case the solution of the 
Riccati equation is propagated forward in time, 
while in the control case the solution is propagated 
backwards in time. The state estimation problem 
for linear discrete systems where all the uncertain 
quantities are described by their membership in 
given sets has been considered by several authors 
[1-5]. The objective is to estimate the set of all 
feasible states compatible with the measurements 
received. Consider the case of the linear discrete 
system : 

Xi~ + I = FkXk + Gkwk (19) 

with measurements of the form 

Zk=Hkxk+v k (20) 

where xkeR" with the initial condition Xo contained 
in a given set X o c R ~, and the input disturbance w~ 
and the measurement disturbance v k are, at each 
time k = l ,  2 . . . .  N, contained in known sets 
W k c R  p and V k c R  m. Then it can be shown [1], 
[2] that the set Sklk of possible states x k consistent 
with a given set of measurements z~, . . . ,  zg is 
given recursively by the following equations 

Skl~=Sklk_ ~ ~ [Xk:zk--Hkxk~Vk} (21) 

S k r k _ t - - - - F k _ i S k _ l f k _  I + Gk_ iWk_  1 (22) 

Solo=Xo. (23) 

One would like to identify a "duality" relation 
between an estimation problem of this form and a 
control problem. Such a relation exists and, as we 
now show, the corresponding control problem is 
the special case of the target tube reachability 
problem considered in section 3 where there is no 
input noise. 

Consider the special case of Problem 2 in which 
the system is linear and there is no disturbance in 
the dynamics, so that the system equation is 

Xk + 1 = A k X k  Jr- BkU k • (24) 

In this case we wish to keep the system output 

Yk = CkXk (25) 

in a prescribed tube {(Yk, k); k = l, 2, . . . ,  N } in 
R" x J N by the appropriate choice of control law 
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u ( ' ,  ") mapping the pairs (Xk, k) into Uk. Using the 
results of Sections 3 and 4, the corresponding 
modified target tube X* is generated by the 
algorithm : 

Xk = Tk r~ {xk.C~xk~Y~} (26) 

T*--'~-IX*k --'~k k+l+(--AklBk)Uk (27) 

where 

X~ = {x~ :C~x~VN}. (28) 

It can be seen that the algorithm (26-28) for the 
control problem and the algorithm (21-23) for the 
estimation problem have certain similarities. They 
both have at each step a set intersection involving 
the output, and a vector sum operation involving 
the input. The solution in the case of the estimation 
algorithm propagates forward in time whereas in 
the case of the control algorithm it propagates 
backwards. In fact, if between the systems (19), 
(20) and (24), (25) we make the identifications 

Fk-t =A~,-lk ; Gk-i  =-AN- tkBN-k  : 

Hk = -- CN-  k (29) 

and between the corresponding sets involved we 
make the identifications 

X =X~---~-{Z'CNZeYN} ; Vk=YN_ k ; 

W~-I =UN-~ (30) 

Appendix 2, where, in addition, linear control laws 
are derived. 

The identifications in equations (29) and (30) are 
not the ones usually associated with the duality 
between the stochastic filtering problem and the 
linear system-quadratic cost optimal control prob- 
lem. We remark, however, that the "usual" identi- 
fications are not the only ones for which the 
Riccati equations, or their discrete-time counter- 
parts, associated with the filtering problem and the 
regulator problem can be put in one-one corres- 
pondence; an alternative set of identifications is 
given by equation (29). In fact, let Pk be the 
solution at time k of the discrete Riccati equation 
corresponding to the optimal control problem 
involving system (24) and the quadratic cost 
functional 

N-1 
J[u] = x}V- ~xN + ~ [xiC'iR~-1C,-x,+ u}Q;- tu,.] 

i=O 

and, with ~ ,  Ri, Qi positive definite matrices, let 
If,(klk ) be the solution at time k of the Riccati 
equation corresponding to the stochastic filtering 
problem involving the system (19), (20) with 
xo, Wk-l,  Vk (k= 1 . . . .  N) being independent 
Gaussian random vectors with zero mean and 
covariances equal to ~ ,  Qu_ k- 1, RN- k respectively. 
Then, by writing the corresponding equations, it 
can be easily seen that under the identifications (29) 
we have 

~:- ~(klk)=PN_k (k=0 . . . . .  N). 

then, for the special case where the measurements 
are zero (i.e. z 1 . . . .  =Zk=0),  we have by com- 
paring (21-23) with (26-28), 

Sklk=X*N_ k k = 0  . . . . .  N - - 1 .  (31) 

Thus one can solve the control problem by 
solving the corresponding estimation problem. In 
either case, of course, one would like to be able to 
describe the sets Sklk or Xk* by finite sets of numbers, 
which will be true for ellipsoids, for example. 
However, even if all the given sets are ellipsoids, 
the sets Ski k are not ellipsoids. On the other hand, 
lower and upper ellipsoidal bounds S~, k, Su, k(Sz, k 
C Sklk ~ S,, k) can be calculated for them [5]. For the 
control problem, the lower bound is of interest as it 
provides suboptimal modified target sets, and it 
can form the basis for an ellipsoidal algorithm 
(with an appropriate modification for the input 
noise case) for construction of a suboptimal solu- 
tion. However, this same algorithm can be studied 
best by relating the tube problem to the linear 
quadratic optimal control problem as is done in 

6. REACHABIL1TY WITH IMPERFECT 
STATE INFORMATION 

In this section we extend Problems l and 2 to 
the case where, instead of having perfect knowledge 
of the system state, the controller has access only 
to noise-corrupted measurements of the system 
output. The objective is again either to drive the 
state xs of the system inside a target set at the final 
time or to keep the entire state trajectory inside a 
target tube. We restrict attention to linear systems 
and assume that all given sets are convex. Within 
these assumptions, we derive sufficient conditions 
for reachability. The complete solution of the 
problem is given in principle by Dynamic Program- 
ming [1]; however, it appears to involve all the 
complexities of a dual control problem [8]. We 
depart here from a strict Dynamic Programming 
formulation. For this reason the conditions we 
derive are only sufficient and the results are weaker 
than those of the perfect information case. 

Consider again the linear system 

Xk + 1 = AkXk + BkUk + GkWk (32) 
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where now the controller has available only 
measurements of the form 

Zk = CkXk @ ¥k (33) 

and the observation noise vectors v k are known 
to belong to given bounded sets Vk. Assume that 
the sets Wk, V k and Xo are the ellipsoids 

Wk= {W~: W~Qk lWkN 1} 

V ~ =  {vk ' - • vkRk vk_<l} 

X o = { X o :  ( X o - . o ) ' ~ - ~ ( x o - ~ o ) _ <  ~I (34) 

where Qk, Rk and W are positive definite matrices 
and It o is a known n-vector. 

Given at time k the measurements z t , . . • ,  z k 
and the prior controls u o . . . .  , Uk- ~, the controller 
can in principle estimate the set of possible states 
x k compatible with the measurements. Unfortu- 
nately, however, this set is not easily characterized 
or computed in practice; on the other hand, an 
ellipsoidal bound to it can readily be calculated. 
We give the relevant algorithm below in Proposition 
4, the proof  of which can be found in Ref. [5]. This 
algorithm is formally identical to a stochastic 
Kalman estimator in modified form and bears 
close relation to an algorithm due to SCHWEPPE 
[2, 3]. However, it has important advantages over 
the latter as the resulting estimator is linear, has 
precomputable gains and as time approaches 
infinity, it converges to a time-invariant filter. 
Since the effect of a known control can be super- 
imposed, we give the algorithm assuming Uk--0. 

Proposi t ion 4. An ellipsoidal estimate set fl(k) 
which contains the set of possible states x k of the 
system (32) compatible with observed measure- 
ments z ~ , . . . ,  z k is given by: 

£ ( k )  - -  {xk : (Xk - -  f~k) ' IC- ~ (k [ k ) (Xk  - Xk) --< 1 -- 52(k)  } 
(35) 

where the center f~ke.R n of the ellipsoid is given 
recursively by 

Y~k+ l = A k £ k  + Pk+ lP2(k + I lk+  1) 

C~+ tRff+ll(Zk+ 1--Ck+lAk~k) (36) 

the n x n weighting matrix l£(klk)  of the ellipsoid 
is given recursively by 

~..(klk) = [(1 - pk)~2- ~(klk  - 1) 

+ pkC~R k 1Ck ] - 1 (37) 

X,(klk -- l) =(1 --ilk- t ) -  tAg- ,Z(k - l l k  - I)A' ,_,  

+ fl£-21Gk- 1Qk- 1G~,- 1 (38) 

and the scalar term 52(k) iS given by 

62(k)=( I - - i l k -  i)( I --Pk)62( k -  1)+~)Z(Zk) (39) 

where 

2(zk) = (zk - CkAk_ ~ ~k - ~ )' [(1 - P k ) -  ~ C J r , ( k l k  

- I)C~ + p~- 1R~] - 1 (z k _ CkAk_ 1 £k- I ). 

(40) 

The initial conditions are: 

~o=.o, ~(01o)=v, 62(0)=0 (41) 

while i lk-1 and Pk, k = l  . . . .  , N,  are arbitrary 
parameters with 0 </~k- ~ < 1 and 0 < Pk < 1. 

It can be seen that the weighting matrix Z ( k l k )  
of the estimate ellipsoid is precomputable and that 
the lengths of its axes are proportional to the 
square root of the term [1-62(k)] which depends 
via equations (39) and (40), on the particular 
measurements received. Since ~Z(k)>0, one can 
always precompute (except for the center) the 
largest possible estimate set 

n ~ = { x k :  ( x ~ - i ~ ) ' Z C - ' ( k ] k ) ( x k - ~ ) _ < l } .  (42) 

Returning now to the reachability problem, we 
assume that the controller has available an esti- 
mator that gives at each time k the ellipsoidal 
estimate set (42) as described by its center ~tk, 
which is computed on-line via (36), and its weighting 
matrix ZC(klk), which may be either precomputed 
and stored or computed on-line• Furthermore, we 
restrict attention to control laws u(. ,  .) that map 
the pairs (~k, k) to U k. We have thus assumed that 
the control process may be separated from the 
estimation process. We now proceed to derive 
sufficient conditions for reachability of a target 
tube {(Xk, k): k =  1, 2 . . . . .  N} c R  n × JN" The 
approach we will follow is to reduce the target tube 
reachability problem with imperfect information 
to a target tube problem with per fec t  information, 
a problem that can be solved using the results of 
Sections 2, 3 and 4. This reduction is achieved by 
shifting emphasis from the reachability of a target 
tube by the system state  Xk to the reachability of a 
different target tube by the s tate  es t imate  f~k, a 
process that is possible because, once ~k is known, 
the system state is guaranteed to lie within the set 
g~k defined by equation (42). In fact, suppose we 
define the ellipsoid Sk, k = 1, 2 . . . . .  N, to be the 
estimate ellipsoid (42) translated to have its center 
at the origin, i.e. 

Sk={z:  z 'Z-I(klk)z_<l~. (43) 

Notice that S k is precomputable. Then it is clear 
that if the state estimate ~:k is known then the set 
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of possible system states is contained in the ellipsoid 
~k + Sk, which is merely the estimate set (42). Con- 
versely, in order for the system state Xk to lie for 
all k in the given target tube 

{(Xk, k): k = l ,  2, . . . ,  N}, 

it is sufficient that the state estimate ~k lies for all k 
in the tube ((Rk, k): k = l  . . . . .  N} where the 
sets ~k are defined as 

£k= {z: (~k+z)eX~, VzzSk}. (44) 

Now, substitution of equations (32) and (33) 
into (36) shows that the estimate ~k is generated 
recursively by 

:~k + 1 = Ak~k + BkUk at- dk (45) 

where the lumped disturbance d k is given by 

dk ----" Lk + 1 Ck + 1 Ak(XR-- :~k) 

-Jt-Lk+lCk+lGkWk-l-Lk+lVk+ 1 (46) 

and the, precomputable, gain matrix L k is given by 

L k = pk~.,(k I k)C~,Rk ~ (47) 

Furthermore, it follows immediately from equation 
(46) that dk belongs to the known set 

Dk =Lk+ 1 Ck+ 1AkSk q-Lk+ 1Ck+ 1GkWk +Lk+ JVk+ 1 
(48) 

where S k is defined by equation (43) and the ellip- 
soids W k and Vk+ 1 are defined in equation (34). 

Thus, a sufficient condition for the reachability 
of the target tube {(Xk, k ) :k=l  . . . .  N} by the 
system state x k in the presence of imperfect informa- 
tion is that the target tube {(Rk, k) :k= 1 , . . . ,  N } 
defined by equation (44) be reachable by the state 
:~k of the estimator (45). Since the estimate ~k is 
generated by the controller and known to him at 
each time k, this problem is simply the target tube 
reachability problem with perfect information that 
was examined in sections 3 and 4. 

We summarize the above development by stating 
the following problem and its solution: 

Problem 3. Consider the discrete system (45) 
with the initial condition ~o--- pc and the target tube 
{(~k, k ) :k=l ,  . . . ,  N} given by equation (44). 
Find, if it exists, a control law u(., ") mapping the 
pairs (~k, k) into Uk, k = 0  . . . .  , N--1, such that 
the state ~k of system (45) lies for all k in the target 
tube {(Rk, k ) :k= l  . . . . .  N} for all possible 
disturbances dk~Dk, where the set D k is given for 
all k=0,  1 , . . . ,  N - 1  by equation (48). 

The solution of Problem 3 can be given using the 
results of section 2. Define, analogously to equa- 
tions (15), (16) and (17), the effective target set 
~ +  1 at time k+ 1, and the updated target set I'* at 
time k 

1~*+ x = {zeRn: (z + dk)E~*+ 1, VdkeDk} (49) 

T* = (zeR": (Akz + 13~u~)~lg~'+ 

for some Uk~Uk} (50) 

=T~ c~Rk (51) 

~,?~=:tN. (52) 

Then, by Proposition I, a necessary and sufficient 
condition for the existence of a solution to Problem 
3 is that :~o-- Po~*,  where pc is defined in equation 
(34). Since existence of a solution of Problem 3 is, 
as indicated earlier, sufficient for existence of a 
solution to the problem of reachability of the 
target tube {(X k, k): k = l ,  . . . ,  N} by the state 
x k of a system (32) in the presence of the imperfect 
measurements (33), we have the following proposi- 
tion: 

Proposition 5. A sufficient condition for reach- 
ability of the target tube ((XR, k): k = 1 . . . . .  N } 
by the state XR of system (32) from the initial con- 
dition set Xo is that ~o=Po~1` * where the set 1`* 
is defined recursively by equations (49-52). 

As in sections 3 and 4, the effective and modified 
target sets E*+I and R* are precomputable via 
equations (49-52), and the polyhedral algorithm of 
Appendix 1, and the ellipsoidal algorithm of 
Appendix 2 are applicable for their calculation. 
We also remark that the problem of reachability of 
a target set XN in the presence of the imperfect 
measurements (33) can be viewed as the special 
case of the problem of reachability of the target 
tube {(Xk, k): k = 1 . . . . .  N } of this section where 
we take all of the sets X~ but X N to be the entire 
space R ~. 

It should be noted that in the derivation of the 
sufficient condition of Proposition 5 we have made 
several weakening assumptions. We have assumed 
that the estimate sets available to the controller are 
the ellipsoids given by equation (42) whereas in 
fact the controller can in principle calculate smaller 
estimate sets. In addition, in equations (45--48) 
we have assumed that the estimation error (Xk--Xk) 
at time k, can be any vector in the estimate set Sk 
of equation (43) whereas the set of possible values 
of estimation error is a subset of Sk which depends 
on the previous disturbances wi_ 1, vi (i= 1 , . . . ,  k). 
Thus it is to be expected that other, possibly 
stronger, sufficient conditions besides the one of 
Proposition 5 exist. It appears, however, that such 
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conditions would require sizable on-line computa- 
tions that would make the control scheme im- 
practical or even infeasible. On the other hand, 
the implementation of a control scheme based on 
the sufficient condition of Proposition 5 presents 
no more difficulty than the one of the perfect 
information case. 

7. A P P L I C A T I O N  TO D I F F E R E N T I A L  GAMES 

In this section we indicate how, with minor 
modifications, the results obtained in previous 
sections may be applied to the examination of a 
class of differential games. Consider again the 
linear discrete-time system 

Xk + 1 =AkXk  + BkUk + Gk W k (52) 

where in this case we identify the controller selecting 
the control Uk, k = 0 ,  1, 2 . . . . .  N - I ,  as "the 
evader" and the controller selecting w k as "the 
pursuer". The initial state x o is assumed known to 
both controllers, as is the state xk as it evolves in 
time. As before, the controllers are constrained to 
select control laws uk(.) and wk(.) whose values 
lie, respectively, in the prescribed sets U k and W k, 
k = 0 ,  1, 2 . . . . .  N - 1 .  Consider also a given 
escape tube 

Te={(Xk, k): k--0,  1,2 . . . .  , N } ~ R " x J ~  (53) 

and its complement in R " x  JN, the capture tube 

Tc = {(Xk, k) : k = 0, l, 2 . . . . .  N } = T E (54) 

where the bar - denotes set complementation. The 
objective of the pursuei is to drive the system state 
into the capture tube T o  while the evader's objec- 
tive is to keep the state outside the capture tube for 
all time, i.e. the evader attempts to keep the state 
trajectory in the escape tube. 

An example where such a problem can arise is 
the case of two separate dynamic systems, an 
evader 

Yk+ I = Dky~ + EkUk 

and a pursuer 

Zk+l = FkZk-I- HkV k 

and capture occurs if the states y~ and z k are 
sufficiently "close" for some k. For example, 
capture might be considered to occur if 

I[C~(y~-z~)t[ <~ for any k = 0 ,  1 . . . . .  ~. 

By making the identifications 

and 

where 

G O 

Mk = [Ck, -- Ck] 

the problem reduces to that stated above. 
Returning to the original system (52), it is clear 

that, since the objective of the evader is to keep the 
state trajectory of the system inside the escape tube 
throughout the whole time interval, the problem 
from the evader's viewpoint is simply that of the 
teachability of the escape tube T E. This, in turn. 
is simply Problem 2 of section 3, where the evader 
and pursuer are identified, respectively, with the 
controller and nature. Recalling that the target 
tube {(Xk, k); k =0 ,  1, 2 , . . . .  N} is reachable 
from state Xo at time 0 if  and only if x o is an 
element of the modified target set X* defined by 
equations (11-14), it follows that escape is guaran- 
teed for the evader if and only if the initial system 
state lies in X*. More generally, the modified 
target tube 

M~={(XL k); k=0,  1 . . . . .  N~ ~55~ 

defined recursively by (11-14), is the set of all 
statetime pairs for which escape is guaranteed. 

From the point of view of the pursuer, however, 
the problem is different, since for capture to occur 
it is sufficient that the trajectory enter the capture 
tube only once during the time interval. In other 
words, the pursuer is interested in the non-reach- 
ability of the escape tube, which occurs if the 
trajectory enters the capture tube at least once 
during the time interval, rather than reachability of 
the capture tube, for which it is demanded that the 
entire state trajectory lie in the capture tube. 
Furthermore, in order to guarantee capture, the 
pursuer must assume the pessimistic attitude of 
"playing first", in the sense of declaring his strategy 
to the evader. In other words, the problem of 
guaranteed capture is the problem of non-reach- 
ability of the escape tube when the evader chooses 
his strategy with knowledge of the pursuer's 
strategy. This is again Problem 2 of section 3 with 
the order of selecting controls reversed, i.e. tile 
sequence of selections is: (1) Pursuer selects w,. 
(2) Evader selects u . . . . .  , ( 2 N - 1 )  Pursuer selects 
wu-z, (2N) Evader selects us-1. In the same way 
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that we recursively defined the effective and modi- 
fied target sets at each time k via equations (11-14), 
we can define their analogs in this case where the 
order of selections is reversed, viz. 

* '  
i = Xk + 1 + ( - -  BkUt) (56) 

T~' = {zeRn: Ak z + GkWkeE~'~- l, VWkeWk} (57) 

= Xkc T *' (58) 

x*' =xN (59) 

Reachability of the escape tube To=  {(Xk, k); 
k = 0 ,  1, 2 . . . . .  N} from state x o at time 0 with 
this reversed order of selections is, clearly by 
analogy with proposition 2, equivalent to xoeX*'. 
Thus the escape tube T~ is non-reachable, and 
therefore capture is guaianteed, from state xo at 
time to if and only if xoCX*', i.e. Xoe~o*' where, as 
before, the bar - denotes set complementation. 
Furthermore, we can view equations (56-59) as 
defining a modified target tube 

M c = {(X[, k): k = 0, 1 . . . . .  N} (60) 

whose complement is the set of all state-time pairs 
for which capture is guaranteed. 

Thus the two modified target tubes Mn and M c 
defined by equations (59) and (60) may be viewed 
as dividing the trajectory space R"x JN into three 
regions, as shown schematically in Fig. 3. The 
modified target tube M e is the region from which 
escape is guaranteed, the complement Mc  of the 
modified target tube M c is the region from which 
capture is guaranteed, and the set of points that 
are in neither M r  nor Mc is the region from which 
neither capture nor escape is guaranteed. 

L /  / .Reg!onofg / / / I / / / / / ' / i uaranteed escape / / / / J 

V ~ ~ \ A  

I ,; / / / :  , / , '  / / I i /  
Io/ t / / / '  , / / , / / ,' /N / 
L / / / / / / / ,  / /,, / , / -, N 

. . . .  

/ / '  , '  / f ' 

/ // , 

FIG. 3. Schematic presentation of  the regions of  
guaranteed capture and guaranteed escape in a pusui t -  

evasion game. 

It is clear that Me will be a subset of Mc since 
Mc is the set of points in R" x,lN from which the 
evader can escape capture when he "plays last" 
whereas M E is the set of points from which the 
evader can escape capture when he is in the less 
advantageous position of having to play first, i.e. 
when he must declare his strategy to the pursuer. 
Furthermore, Mr  will in general be a strict subset 
of M o  so that the region M E of guaranteed escape 
and the region Mc of guaranteed capture are in 
general disjoint except at time N. This can be seen 
by examining the updated target sets T~v-i and 

*t TN-1 at time N - 1  defined by equations (11-14) 
and (56-59), viz. 

TN- 1 - {XN- 1 :~l U N-  I(~UN- I s.t. VWN- I~WN_ x, 

AN_IXN_ 1 -'I-BN_lUN_ 1 q" GN_IWN_I~XN} (61) 

• FN_I*t  = {XN_I:VWN_I~WN_I, : : f U N -  I ~ U N -  1 s . t .  

A N -  IXN - I + B N -  fUN - I + GN- IWN - 16XN} (62) 

it is clear that in order for T~_ 1 to equal " *' r N - - I ,  

the order of the phrases "3UN-I~UN-/'  and 
"VWN_IeWN_I" must be interchangeable, which 
is not in general the case. 

The three regions in R " x l  N of guaranteed 
capture, guaranteed escape, and neither guaranteed 
capture nor guaranteed escape can be interpreted 
profitably in terms of a sequential zero-sum game 
involving the system (52) and the cost functional 

v ) = ~ l  if the evader escapes 
J(Xk, k,  I!, lo if the evader is captured. (63) 

This is simply the characteristic function of the 
escape tube (54) in R" x J N. It is clear that the 
evader wishes to maximize J and the pursuer wishes 
to minimize J. 

A moment's reflection shows that the region of 
guaranteed escape is the set of state-time pairs 
(Xk, k) for which 

max rain J [ x k , k ,  u, v] 
u w 

= min m a x  J [Xk,  k, u, v] = 1 
w 11 

i.e. the set of state-time pairs for which the upper 
and lower value of the game are both equal to 1. 
Similarly, the region of guaranteed capture is the 
set of state-time pairs for which 

0 = max rain J[xk, k, u, v] 
la W 

= min max J[x~, k, u, v]. 
w u 
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The region for which neither capture nor  escape 
are guaranteed is the set of  (x~, k) for which 

0 =  max rain J[x~, k, u, v] 
a w 

< min max d[xk, k, u, v] = I 
W u 

i.e, for which the game has no saddle point  in pure 
strategies. Under these conditions, one might wish 
to proceed in a number  of  ways. The usual pro- 
cedure is to seek a saddle point  in mixed strategies. 
We do not investigate this situation further in this 
paper. 

It should be noted that for a constant system 
where the sets Uk, Wk, Xk are also constant  one 
can determine the minimum time for guaranteed 
capture from a given initial condit ion x,,. This 
minimum time is ( N - q )  where q is the largesl time 
index of  sets - * '  Xk that contain Xo. 

We finally remark that the polyhedral algorithm 
of Appendix I is applicable for characterization o f  
the guaranteed capture and guaranteed escape 
tubes when the sets Uk, W~, and Xk are polyhedra 
or unions o f  disjoint and closed polyhedra, in the 
particular case where X j = X2 . . . .  XN_ ~ = X = R" 
and the problem is closely related to the target set 
teachability problem the computat ional  require- 
ments are greatly reduced. 

8. CONCLUSIONS 

Attention has been given to the problem of the 
reachability of  a target set or a target tube by the 
state of  a discrete dynamic system. Necessary and 
sufficient conditions for existence o f  a solution are 
given for the case where the state of  the system can 
be measured exactly, while sufficient conditions for 
existence of  a solution are given for  the case when 
only disturbance-corrupted output  measurements 
are available. Algori thms for implementation o f  
the relevant control  schemes are given for the case 
of  a linear system; in particular, the ellipsoidal 
approximation algoli thm given in Appendix 2 
leads to linear control  laws. It is also shown how 
the target tube reachability problem is related to a 
class of  pursuit-evasion games. 

The results reported in this paper can be extended 
in several ways. The problems of  reachability o f  a 
target set and a target tube for a continuous time 
system, and particularly the problem of  infinite 
time reachability for both discrete and continuous 
time systems deserve attention. For  this latter 
problem some results have been reported in this 
paper in connection with the ellipsoidal algorithm 
of  Appendix 2. However, the infinite time reach- 
ability problem is essentially different in structure 
from the problems considered in this paper, and it 
will be the subject of  a for thcoming publication. 
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APPENDIX I 

,4 polyhedral algorithm Jbr construction o f  tubes 

In this Appendix we consider the problem o|" 
section 4, and we give an algorithm for  construction 
o f  the effective and modified target sets E~ . . . . .  E~, 
X ~ - I  . . . . .  X*, when the sets Xk, Ug are closed 
convex polyhedra,  or unions of  closed disjoint 
convex polyhedra,  and the system is linear. 

A polyhedron P in R" is characterized by a finite 
set of  vectors { e ~ , . . . ,  ek}, the support set, and 
the values of  its support  functional 

o ( e ,  [P) . . . . .  a ( e x l P )  

at these vectors. It is the set of  points x satisfying" 

< x, el > -< tr(e~lP) for i = I . . . . .  k .  

We give the following lemmas the proof  of  
which can be found in Ref. [1 I]. 

Lemma A.I.  Given a polyhedron P with support 
set {e~ . . . . .  e,,}, and support  functional 

gr(e, [P) . . . . .  a(%tP) 

the polyhedron AP (A" invertible matrix) has 
support set {A'- le~ . . . . .  A' -~e~, and values of" 
support  functional 

d ( A ' - '  e,IAP) = a(e;IP), i=: 1 . . . . .  k. 
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Lemma A.2. Given two polyhedra X and Y with 
support sets { x l , . . . , x k } ,  { Y l , " ' , Y m } ,  the 
vector sum X +  Y is a polyhedron with support set 
{xl . . . .  , Xk, Yl, • . .  Y,,} and support functional 

a(ql x + Y) = a(qlX) + a(ql Y) 

q = x i  . . . .  , X k ,  Y l ,  • • • , Y , . '  

Also, the intersection Xc~ Y is the polyhedron 
bounded by the hyperplanes 

<x ,  q>  _<min{a(qlX), a(qlY)) 

q = x l  . . . . .  Xk, Yl . . . . .  Y ~ .  

We also prove the following Proposition: 

Proposition A.1. If the polyhedron XN of the 
target tube has support set {el . . . .  , ek} and 
support functional a(e,lXN) . . . . .  a(eklXN) the 
effective target set E~ is the polyhedron bounded 
by the hyperplanes 

< x. e, > < ~(e, tX~)-  ~(G~,_ le,[W~_ 1) 

i=1  . . . . .  k (A.1) 

where a(.[W N_ 1) is the support functional of the 
set W~,_ 1. 

Proof. If  x~E* then 

<x,  q>+o(G'N--lqlWN--O<--a(q[XN), qeR k 

and xeP where P is the polyhedron bounded by 
the hyperplanes (A.1). Hence, E * c P .  Consider 
now the polyhedron Pw with support set 
{ex . . . . .  ek} and support function 

cr(e, IP.) = cr(G~_ xe, lW~_ 1), 

i=1 . . . . .  k. Then it is Gs_IWN_IcPw. Using 
Lemma A.2 it is P + P w ~ X N  and hence GN_ IWN_ 1 
+ P'-'XN which implies P =E*. Hence P = E*. 
Q.E.D. 

We note that it is possible that not all of the 
hyperplanes (A.1) are support hyperplanes of E~ 
and before we proceed with the algorithm the 
redundant hyperplanes should be discarded using 
linear programming. 

After the polyhedron E* is determined, the 
• - 1 E *  modified target set Xs-1 =XN- lC~AN-I[ - s 

+ ( - B s - I U N - 1 ) ]  which dearly is a polyhedron, 
can be determined using Lemmas A.1, A.2 and 
linear programming. We proceed similarly to 
determine the remaining polyhedra of the tubes. 
It should be noted that the number of support 
hyperplanes of the polyhedra tends to increase as 
we go towards the initial time, and for high dimen- 
sional systems this way involve nontdvial storage 

requirements for the controller. On the other hand, 
the algorithm does not involve any approximations, 
and all computations are done off-line. 

APPENDIX 2 

An ellipsoidal approximation algorithm for con- 
struction of tubes 

From the viewpoint of practically implementing 
the results of sections 2 through 4, it is dearly 
desirable that the effective and modified target sets 
be describable by a finite collection of numbers. 
Such is the case if, for example, these sets are 
ellipsoids. However, even if the system is linear 
and the various constraint sets are ellipsoids, these 
effective and modified target sets are not ellipsoids. 
On the other hand, a possible approach is to 
internally approximate these sets by ellipsoids, a 
procedure that not only allows us to easily imple- 
ment the results of Sections 3 and 4 but, in addition, 
leads to control laws that are linear. It should be 
noted, however, that by internally approximating 
the true modified and effective target sets by ellip- 
soids the necessary and sufficient conditions 
obtained earlier become only sufficient. 

Consider the special case of Problem 2 in which 
the system is linear and given by 

Xk + 1 = AkXk  "4- Bkllk "-}- Gk W k 

and the relevant constraint sets are the ellipsoids 
described by 

Xk = {zeR": z'C~Ckz_< 1} 

Xu = {zER": z ' T z <  1} 

U = { v ~ R  m : v'Rkv < 1} 

Wk={VERq: v'Dkv~< 1} 

and the matrices~, R k and D k are assumed positive 
definite for all k = 0, 1 . . . .  , N -  1. 

We first approximate the effective target set E~ 
by an ellipsoid. To this end, we state the following 
lemma, the proof of which can be found in Ref. [2]. 

Lemma A.3. Consider two ellipsoids Sx, S2 with 
support functionals a(qls1)=(q'Qq) ~, a(qlS2) 
= (q'Q2q) ~. Their vector sum S 1 + $2 is contained 
in the ellipsoid S with support function a(qlS) 
= {q'[fl-lQl +(1-f l ) - lQz]q}~,  where fl is a free 
parameter with 0 < fl < 1. 

We seek to internally approximate E~ by an 
ellipsoid I~NcE N. Hence we must have 

] ~ q -  GN_ IWN_ 1 c=X N • 

The support functionals of the ellipsoids GN- tWN- 1 
and Xs are, 

a(q I GN- IWN- a) = (q' GN - 1Dff3 a G~_ xq)* 

and a(q[XN)=(q'V-lq) ½. By Lemma A.3 the 
relation I~* + GN- 1WN- 1 = XN is satisfied if the 
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support functional of 1~* is given by a(ql~,~,) 
=(q'Fff Xq)~ where 

FNt=(1--flN)(*-I--flT¢ ~ GN - X D~-I_ t G~_ 1 ), 

O<flN<l.  (A.2) 

If  the given constraint sets are such that E~ has a 
nonempty interior, then there exists a fin with 
O<flN<l such that the matrix FN of (A.2) is 
positive definite and the ellipsoid 

£ ~ = { Z :  Z'FNZ~< 1} (A.3 )  

is contained in E~. 
The modified target set is now defined, using the 

ellipsoid 1~*, as the set of points xN-~ with the 
property that both 

x~v- 1CN- 1CN- IXN- 1 ~< 1 (A.4) 

and 

B * x~=AN-~XN-I+ ~_lU~_le~ N 

for s o m e  U N _ I e U N _  1 . (A.5) 

The second requirement becomes in this case that 

X~/FNX N_< 1 for some u~v_ 

with U~_IRN_ l l lN_l  < 1 . (A.6) 

The set of points satisfying both equations (A.4) 
and (A.6) clearly contains the set of points with the 
property that 

' C' X N -  1 N ~ 1 C N  -- 1 XN - 1 

"+ U~V - 1 RN - 1 UN - 1 + x~vFNXN --< ] 

where 

(A.7) 

X N = A N - I X N - 1  + B N - l U N -  1 . (A.8)  

By well-known results on the linear quadratic 
problem of optimal control, see Ref. [9], the set of 
x N_ ~ satisfying equations (A.7) and (A.8) is given 
by 

~ - - 1  = { X N - I  : XtN-1KN-1XN-I~I} ( A . 9 )  

where the positive definite matrix K u_ ~ is given by 
the discrete Riccati equation 

K N -  1 --~-- A~_ i [F~ 1 

B -1  , -1 A ± ~ ,  t~ • ( A . 1 0 )  + N- 1RN-1BN-1] N-~-'~N--I"-~N--1 

Furthermore, a control law that achieves reach- 
ability is 

UN-~(XN-0= --(R~_~ 

+ B~v- xF~vBN- 1)- 1B~- 1FtcAN- lxN- 1. (A.11) 

If ~ v - I  contains the set  GN_2WN_ 2 the subse- 
quent effective target set E~v-i is nonempty and 
we proceed with similar approximations. If some 
effective target set is empty, then the algorithm 
breaks down. Tbis, of course, does not imply 1hat 
the original target tube is not reachable, since the 
approximations make this condition sufficie~lt only. 
If one wishes to proceed with the ellipsoidal 
algorithm he will have to start with a "larger" 
target tube. We summarize the algorithm below: 

A suboptimal modified target tube {X]' . . . . .  ~ }  
and effective target tube {El* . . . .  , E~v} are given 
recursively by: 

X~'= {Xk : xjK~xk_< 1} k = l  . . . . . .  ,V 

Ek ={Xk: XkFkXk<_I} k=-I . . . . .  N 

where 

Fk -:t = ( 1  --flk)l-K~ - I  _ f l ; 1 G k  - 1Dk_ l Gk_ t ] - I  , 

K k _ l  , -1  =Ak- l[Fk + Bk_ ,R~-_tlB~_,]-'A,_, 

+C~_ ~C~_ 

KN = kl/ 

and the parameters flk are such that 0 < flk < 1 and 
the matrices F k are positive definite. A sufficient 
condition for reachability is then that the set 

T* = {x  o: XoKox o '  _< 1 } 

contains Xo, where 

K o - A o [ F  1 + B o R - 1 B ' ] - x A  o. 

Furthermore, a control law that achieves reach- 
ability is given by: 

Uk(Xk) = -- (Rk + B~Fk+ 1Bk)- tB~,Fk + 1AkXk • (A.12) 

We remark that another control law that achieves 
reachability is the control law with a dead zone 
given by equation (A.12) when x~A~Fk+IAkXk>I 
(i.e. Akx,¢l~*+0 and Uk(X,)=0 otherwise. In 
certain applications the use of a dead zone can be 
particularly beneficial. 

Consider now the case where the system is 
constant (time-invariant) and the given constraint 
sets are constant. Suppose that the algebraic 
matrix equation 

K = A' [ (1  - fl)K- 1 _ fl- l(1 _ fl)GD- 1 G' 

+ B R - X B ' ] - I A + C ,  C 

has a positive definite solution K for some 0 < fl < 1 
for which the matrix 

m 
- iF = ( 1  -fl)[K -x - f l -  1GD-IG'] 
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is also positive definite. Then  if  the initial  state 

belongs to the set X * = { x :  x ' K x < l } ,  then the 
state of the system can be made to stay indefinitely 
in the tube {X*, X* . . . .  ) and  since X * c X  
= { x  : x ' C ' C x < l }  infinite time reachabili ty is 
achieved. The corresponding l inear t ime-invariant  
control  law that achieves reachabili ty is 

u(x )  = - (R  + B ' F B ) -  ~ B ' F A x  

and it can have a dead zone if desirable. 

The ellipsoidal algori thm presented in this 
Appendix  has the drawback that  the approxima- 

t ions involved may cause failure of existence of a 

solut ion even when an optimal  solut ion exists. For  
this reason specification of " larger" target tubes 

and " larger"  control  sets may be necessary if a 
solut ion is to be achieved. Thus the procedure is 
not  entirely satisfying. However,  in view of the 

appeal of the linear control  laws, it may prove 
useful in at least some practical cases. Also an 
impor tan t  quest ion that  requires further con- 

sideration concerns the quality of the approxima- 
t ions involved in the algorithm. Unfor tunate ly ,  it 

appears to be difficult to obta in  precise estimates 

of the approximat ion involved and further research 
and simulat ions are required for a more complete 
evaluat ion of the merits and drawbacks of the 
algorithm. 

R6sum" Cet article se rapporte ~t la commande en boucle 
fermde de syst~mes ~ temps discret en prdsence d'incerti- 
tudes. L'incertitude peut avoir lieu sous la forme de pertur- 
bations dans la dyanmique du syst%me, sous la forme de 
perturbations faussant les mesures ~t la sortie ou sous la 
forme d'une connaissance incomplete de l'dtat initial du 
syst%me. Dans tousles cas, les grandeurs incertaines sont 
suppos6es inconnues sauf leur appartenance ~t des sddes 
donn6es. L'article consid~re d'abord le probl~me d'amener 
l'dtat du syst%me au moment final dans une sdrie prdscrite de 
buts sous la plus mauvaise combinaison de perturbations. 
Ceci est ensuite gdndralis6 au probl~me de maintenir route 
la trajectoire de rdtat ~t l'intddeur d'une "enveloppe" donnde 
de buts. L'article donne des conditions n6cessaires et 
suffisantes pour la capacit6 d'atteindre une sdrie de buts et 
une enveloppe de buts dans le cas oh l'6tat peut ~tre mesur6 
exactement, tandis que des conditions suffisantes pour cette 
capacit6 d'atteindre sont donn6cs lorsque seules des mesurcs 

la sortie faussdes par les perturbations sont disponibles. 
L'article donne un algorithme pour la construction efficace 
d'approximations elliptiques des sdries en question et il est 
montrd que cet algorithme conduit ~t des lois lind, aires de 
commande. L'article discute 6galement des applications de 
ces rdsultats/t des jeux de poursuite-fuite. 

Zusammenfasstmg--Die Arbeit befal~t sich mit der Regelung 
von diskontinuierlichen Systemen bei Vorhandensein einer 
Unbestimmtheit. Sic kann vorliegen in Form yon StOrungen 
in der Systemdynamik, von StOrungen, die die Ausgangs- 
messungen f/ilschen oder yon unvollst~indiger Kenntnis 
des Anfangszustandes des Systems. In allen F~illen werden 
die unbestimmten GrSBen als unbekannt, abcr als in gege- 
benen Mengen liegend, angenommen. Betrachtet wird 
zun~ichst das Problem der ~berftihrung des System-zustandes 
zur Endzeit in eine vorgeschriebene Zielmenge und zwar bei 
der ungiinstigsten Kombination von Sttirungen. Dies wird 
auf das Problem der Beschr~inkung der ganzen Zustands- 
trajektorie auf einen gegebenen Ziel-"Schlauch" ausgedehnt. 
Notwendige und hinreichende Bedingungen werden fiir den 
Fall angegeben, dab der Systemzustand exakt gemessen 
werden kann, w~ihrend hinreichende Bedingungen ftir die 
Erreichbarkeit fiir den Fall gegeben werden, wenn lediglich 
durch StSrungen gef~ilschte Messungen vorhanden sind. 
Angegeben wird ein Algorithmus zur wirksamen Konstruk- 
tion yon elliptischen Approximationen der enthaltenen Men- 
gen. Welter wird gezeigt, dab dieser Algorithmus zu linearen 
Regelungsgesetzen fiihrt. Die Anwendung der hier gewonn- 
nenen Ergebnisse auf eine Klasse von Verfolgungsspielen 
wird diskutiert. 

Pe3~oMe--HacToatuaa CTaTb~I OTHOCttTC~I K ynpaaneriHro 
B 3aMKHyTOM KOHType CHCTeMalVlH C ~IHCKpeTHbIM BpeMeHeM 
B npncyTcTBHH HeoHpe]IeJleltnocTei~. Heonpe~eaemaoc-rb 
MOYKeT PIMeTb Me.TO B CMLICJIe rIoMex B ~ l l t a M H r e  CHeTeMBI~ 
B CMbICJle HOMeX /,IcKa~alottlrlx BblXO~IHBIe H3MepCHg_Jt ~rlH 
B CMblCIle HeHOJIHOrO 3HaHH~I Haqa~lbaoro  COCTOIIHHff 
CHCTeMBI. BO BCeX cJly'-laJlx~ Heonpe]xesteanble l~J'IttXl~IHbl 
npe;lnonaramTcs Hett3BeCTRbLMI4 3a l~crnio~leHHeM HX 
npnHa~.rte~nocTr~ r onpe~eaeaHLiM pg;IaM. CTaTbn pacc- 
MaTpHSaeT cHaqana 3a]la'-ry npHae~enna COCTOSrana CHCTeMbl 
B KOHe~IbI~ MOMenT B 3a~larga~na pv~ ttenei~ npH Hanxy~j.ueM 
cOqeTaHHH noMex. ~TO 3aTeM 0606tuaeTc~t r 3a~aae no~- 
~ep~KaHrts COCTOnmaa BHyTpll ./laHH01~ "o6onoarn" ueaei~. 
CTaTb~ ;IaeT Heo6xo/IHMble n ~IOCTaTO~tnbIe yCHOBILq ~In~l 
cnoco6HOCTH ~IOCTH~eHILq pavia uenett B cny~ae Kor~la 
COCTO~HHe MO)KeT 6MTb TOqHO H3MepcHo, B TO BpeIvm KaK 
IIOCTaTOqHble yCn0BH8 ~Ing 3TO~ cnOCO6HOCTH ]IOCTmKCHHg 
]Ia~OTCg Kor~la HMelOTC~t HaYIHIIO JIHIIIh BbIXO~qbIe H3Mep~HHII 
HcKa)KeHHbIe nOMeXaMH. CTaTI,~I ~IaeT aYlrOpHTM /UIg 
3(1)dpeKTHBHOrO nOCTpOCm~I 3JIYUlnTIIRCCKIJX npH6ma)KeHrfl~t 

pacCMaTpHBaCM~LM p~aM H noKa31,1BacT ~ITO 3TOT 
anropHTM npnBo~ir~T K nrmeftnr~iM 3aKOHaM ynpaancm~a. 
CTaTbS TaK~c 06cy)roxaeT npr~McHenas CBovrx pc3ym, TaTOB 
rlrpaM npccne~o~anmq H no6cra. 


