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Abstract—In the face of an adverse event, autonomous
systems may undergo abrupt changes in their dynamics. In
such an event, systems should be able to determine their
continuing capabilities to then execute a provably completable
task. This paper focuses on the scenario of a change in
the system dynamics following an adverse event, aiming to
determine the system’s guaranteed performance capabilities
by finding a set of states that are provably reachable by the
system. While it is obviously impossible to exactly determine the
reachable set without full knowledge of the system dynamics,
we present a method of determining its under-approximation
while assuming only partial knowledge of the system structure.
Our technical approach relies on showing that an intersection
of infinitely many ellipsoids — available velocity sets for each
system consistent with the partial knowledge of the dynamics
— is the same as an intersection of some finite collection of
ellipsoids. This result enables us to find a maximal ellipsoid
lying in such an intersection, yielding a set of velocities that
the system is provably able to pursue regardless of its exact
dynamics.

I. INTRODUCTION

In the event where a physical system experiences signif-
icant damage, it is possible that there will consequently be
an abrupt change in its dynamics. In such scenarios, under-
standing the continuing capabilities of the system is crucial,
e.g., to produce emergency maneuvers. Consequently, this
paper is concerned with developing the ability for a system
to autonomously determine the set of guaranteed reachable
states without a reliable dynamic model. We thus aim to
find an under-approximation of the reachable set of states to
determine what a system’s capabilities are despite significant
uncertainties in the model. The system can then assign prov-
ably completable tasks, thus ensuring continued survival and
completion of the system’s long-term mission. Following [1],
we denote such a set as the guaranteed reachable set (GRS).

Prior initial work [1] focused on finding an under-
approximation of the GRS for systems with unknown dy-
namics assuming knowledge of the local dynamics at a
single point and Lipschitz bounds on the rate of change of
said dynamics. However, these assumptions may often be
limiting as they do not incorporate any additional physical
and design knowledge that may be available about the
system. In this paper, we make a first step at exploiting
such knowledge, using information on the effect the system’s
actuators have on each state [2].

Following [1], our approach relies on the interpretation
of a control system as a differential inclusion [3] whose
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right hand-side equals the set of velocities that the system
can achieve at every state in the state space. The set of
velocities that are provably reachable is the guaranteed
velocity set (GVS). The GVS is, in an often-considered case
where the system inputs lie in a unit ball, an intersection
of infinitely many ellipsoids. Given its complex structure,
previous work [1] under-approximated it. In this work, we
show that the GVS can be represented as an intersection of
only finitely many ellipsoids. Moreover, based on this fact,
we also introduce a method that finds the optimal ellipsoidal
under-approximation of the GVS by solving a semi-definite
program with finitely many constraints. The simple geo-
metric structure of our optimal ellipsoidal inclusion is then
represented as a known control system whose reachable set
produces a set of states guaranteed to be reachable by the
original partially unknown system. We finish our work by
showing the under-approximation is meaningful in practice
by illustrating the results on a numerical example.

A. Prior Work

The work of this paper comes from a similar motivation,
but significantly differs from that of robust and adaptive
control [4], [5] and abstraction-based methods [6]. These
methods, although central for many applications, largely
attempt to ensure that a system will reach its original objec-
tive after a change in dynamics; they offer no guarantees
for such reachability once the system’s capabilities have
changed significantly enough that the original objective is
no longer reachable. Instead, our theory develops methods
of determining states that are provably reachable.

Apart from [1] and its precursor paper [7] which were
discussed above, existing methods that calculate the forward
reachable set for systems with partially known dynamics
assume that dynamics are generated by a finite number of
uncertain parameters [8], [9] or undergo small disturbances
[10]. These methods cannot calculate the reachable set of
a nonlinear system whose dynamics are largely unknown,
notwithstanding some knowledge of system design and phys-
ical laws. In contrast, our method can under-approximate the
reachable set despite abrupt changes in the dynamics. Further
similarities to our paper are found in techniques such as
[11], [12], but those over-approximate the set of reachable
states. Finally, classical data-driven learning methods [13],
[14] collect data through repeated system runs, which cannot
be executed onboard in short time intervals. Conversely,
the proposed method directly exploits prior knowledge of
physics and design and does not require multiple system
runs, allowing for the potential of real-time computation.



B. Notation

We denote the set of all n×m real matrices by Rn×m. For
any vector v, ∥v∥ denotes its Euclidean norm. For any matrix
M , MT denotes its transpose, ∥M∥ denotes its Euclidean
norm: ∥M∥ = max∥v∥=1 ∥Mv∥, and ∥M∥max denotes its
max norm: ∥M∥max = maxij |mij | where mij are elements
of M . Equivalently, ∥M∥ = σ1(M) where σi(M) represents
the i-th largest singular value of M . Additionally, M ≥ 0
denotes a positive semi-definite matrix, and Sn

++ the space
of all symmetric positive definite matrices in Rn×n. We let
In denote the identity matrix of dimension n, and 0m×n

denote a zero matrix of appropriate dimensions. Set GL(n)
denotes the general linear group in Rn×n, i.e., all invertible
n× n matrices. Symbol ⊙ denotes the Hadamard product of
two matrices. Notation Bn(a; b) denotes a closed ball in Rn

centered at a ∈ Rn with radius b ≥ 0 under the Euclidean
norm. We define CA(M) = {M + E | |eij | ≤ |aij | ∀ i, j}
where eij and aij denote elements of E and A respectively,
and [k] = {1, . . . , k} for any k ∈ Z. Notation a + BX
where a ∈ Rn, B ∈ Rn×m, and X ⊆ Rm denotes the set
a+BX = {a+Bx | x ∈ X}.

II. PROBLEM STATEMENT

Throughout the paper, we attempt to meaningfully under-
approximate the reachable set of a nonlinear control-affine
system M(f,G) defined by

ẋ(t) = f(x) +G(x(t))u(t), x(0) = x0, (1)

where all t ≥ 0, x(t) ∈ Rn, functions f : Rn → Rn, and
G : Rn → Rn×m are smooth enough to ensure the existence
and uniqueness of a solution to (1) for the considered u,
and admissible inputs u(t) ∈ U = Bm(0; 1). Taking U =
Bm(0; 1), i.e., assuming that actuators can jointly generate
inputs up to some maximal magnitude, is a common setting
in constrained control [15], [16]. Without loss of generality,
we assume x0 = 0. The system is additionally known to
satisfy the following assumption.

Assumption 1. The system M(f,G) is fully actuated at
x0 = 0, i.e., m = n and G(0) ∈ GL(n).

Full actuation is also assumed in previous work [7];
generalizing to the under-actuated case presents issues with
determining the rank of G(x) for x ̸= 0 and is left for future
work. We proceed by defining

A(B) = {A | aij ≥ 0 ∀ i, j,

∥A∥ < min
D+B∈GL(n)
|dij |≤aij∀i,j

∥(D +B)−1∥−1}, (2)

where dij and aij are elements of D, A ∈ Rn×n respectively
for all i, j. We can now define Assumption 2.

Assumption 2. Dynamics f are known, as well as G(0)
such that G(0) ̸= 0. We assume that for all x ∈ Rn, G(x) ∈
C∆(x)(G(0)) where ∆(x) is known and ∆(x) ∈ A(G(0)).

As stated previously, we can compute G(0) with an
arbitrarily small error [17] and may know ∆(x) from known

physical laws. In practice, it is possible that Assumption 2 is
only known to hold on D ⊆ Rn. In such scenarios, we only
consider the system’s reachable set generated by trajectories
that do not leave D. Additionally, there is a simple sufficient
condition to verify (2): by Weyl’s inequality for matrices
[18], the fact that ∥(B + D)−1∥−1 = σn(B + D), and
since ∥G(x) − G(0)∥ < ∥∆(x)∥ by [19], if ∥∆(x)∥ ≤
σn(G(0))/2, then ∆(x) ∈ A(G(0)).

We want to determine conditions under which
rank(G(0)) = rank(G(x)) for some ∆(x). For the sake of
completeness, we repeat and modify Lemma 1 in [1] in the
following proposition which determines easily computable
bounds that guarantee rank(G(0)) = rank(G(x)).
Throughout the paper, G−1(0) denotes the inverse of G(0).

Proposition 1. If ∥∆(x)∥ < ∥G−1(0)∥−1, then
rank(G(x)) = rank(G(0)).

Proof. Let A, B, D be as in equation (2) where A = G(0),
B = ∆(x), D = G(x) − G(0). By Assumption 1 and
equation (2), rank(G(0)) = n. By Weyl’s inequality [18],
σi(G(x)) ≥ σi(G(0)) − ∥D∥ for all i ∈ [n]. Thus, if
∥D∥ < σn(G(0)), then clearly σi(G(x)) > 0 for all i ∈ [n],
which implies rank(G(x)) ≥ n, i.e., rank(G(x)) = n.
Notice that σn(G(0)) = ∥G−1(0)∥−1. By Assumption 2
and [19], ∥D∥ ≤ ∥∆(x)∥, so the claim holds. ■

We now focus on the problem of characterizing the un-
known system’s reachable set, as well as the set of velocities
available to the system at every state.

A. Guaranteed Velocity Set

We define the available velocity set of the system
M(f,G) at state x by Vx = f(x) +G(x)U , and introduce
the following ODI:

ẋ ∈ Vx = f(x) +G(x)U , x(0) = x0. (3)

As stated in [1], if a trajectory ϕ(·;x0) satisfies (3), then it
obviously serves as a solution to the control system (1) for an
admissible control input, and vice versa. We use the classical
notion of a solution of ODE (1) and ODI (3) — as defined,
e.g., in [20] — where the relevant equation or inclusion
needs to hold for almost every t. Given Assumption 2, set
Vx0

= V0 is known. To account for velocities available in a
system with unknown dynamics, we define the guaranteed
velocity set (GVS) below:

VG
x = f(x) +

⋂
Ĝ ∈ C∆(x)(G(0))

Ĝ(x)U ⊆ Vx. (4)

The GVS VG
x is the set of all velocities that can be taken

by all systems consistent with the assumed knowledge of the
dynamics. It is thus natural to consider the following ODI:

ẋ ∈ VG
x , x0 = 0. (5)

If VG
ϕ(T ;x0)

= ∅ for some T , we will use the convention
that the trajectory of (5) ceases to exist by time T . We now
continue towards guaranteed reachability, and discuss how
(5) can help under-approximate the system’s reachable set.



B. Guaranteed Reachable Set

We want to under-approximate the system’s set of reach-
able states while exploiting the knowledge of unforced dy-
namics f and bounds on G(x) obtained from C∆(x)(G(0)).
Let T ≥ 0. Let us define the (forward) reachable set
Rf,Ĝ(T, x0) = {ϕf̂,Ĝ

u (t;x0) | u : [0, T ] → U , t ∈ [0, T ]},
where ϕf,Ĝ

u (·;x0) denotes the controlled trajectory of the
system M(f, Ĝ) with control signal u and ϕf,Ĝ

u (0;x0) =
x0.

We describe the guaranteed reachable set (GRS) as

RG(T, 0) =
⋂

Ĝ ∈ C∆(x)(G(0))

Rf,Ĝ(T, 0). (6)

Equation (6) characterizes the set of all states that are
reachable by any system consistent with our knowledge of
the system dynamics. Our paper’s central problem is given
as follows:

Problem. Determine or meaningfully under-approximate the
GRS.

To solve this problem, we turn back to the GVS defined
above. The overall idea is to provide an under-approximation
for set Vx using sets C∆(x)(G(0)) and V0, then to use this
under-approximation to arrive at a control system whose
reachable set under-approximates the GRS. The following
proposition, proved in [7], holds directly from (6) and (4).

Proposition 2. Let T ≥ 0. If a trajectory ϕ : [0,+∞) → Rn

satisfies (5) at all times t ≤ T , then ϕ(T ) ∈ RG(T, 0).

We denote the reachable set of (5) as RVG
x
(T, 0). Note

that by Proposition 2, clearly RVG
x
(T, 0) ⊆ RG(T, 0),

however these sets are not necessarily equal [7]. Establishing
conditions for the equality of the reachable set of (5) and
RG(T, 0) is an open problem for future work. In the next
section, we begin formulating the theory that can be used to
calculate the reachable set of (5).

III. FINITE PERTURBATION THEOREM

The Finite Perturbation Theorem, which serves as the
focal point of this paper, determines conditions under which
calculating VG

x can be reduced to characterizing a set with
finitely many constraints. We begin by describing the sup-
porting lemmata needed to prove this theorem.

A. Supporting Lemmata

The first step is to derive conditions under which the sign
of elements of u ∈ U are identical to satisfy conditions
required for Lemma 2 to hold.

Lemma 1. Let A ∈ GL(n) and E ∈ Rn×n so that

E =

[
1 01×(n−1)

0(n−1)×n

]
. (7)

Let 0 ≤ δ < ∥A−1∥−1, v ∈ Rn, and uδ, u−δ ∈ Bn(0; 1) be
such that

v = (A+ δE)uδ, v = (A− δE)u−δ. (8)

If we denote uδ :=

[
uδ
1

ûδ

]
and u−δ :=

[
u−δ
1

û−δ

]
with

uδ
1, u

−δ
1 ∈ R, assume uδ

1 ̸= 0 and u−δ
1 ̸= 0. Then

sign(uδ
1) = sign(u−δ

1 ).

Proof. Given that ∥δE∥ = δ < ∥A−1∥−1, following
the steps of the proof of Proposition 1, we observe that
rank(A) = rank(A + δE). Hence, A + δE ∈ GL(n). We
continue by expressing uδ and u−δ in the following terms:

uδ = (A+ δE)−1(A+ δE)uδ = (A+ δE)−1v,

u−δ = (A− δE)−1(A− δE)u−δ = (A− δE)−1v.

It follows that[
uδ
1

0(n−1)×1

]
= E(A+ δE)−1v,[

u−δ
1

0(n−1)×1

]
= E(A− δE)−1v.

(9)

Clearly, v ∈ Rn = Im(A+ δE) = Im(A), so we know there
exists a vector u such that v = Au. Thus,[

u1

0(n−1)×1

]
= EA−1v. (10)

If sign(uδ
1) = sign(u1) and sign(u−δ

1 ) = sign(u1), then
sign(uδ

1) = sign(u−δ
1 ) must hold. It is trivial to show that if

|b| > |a−b| for any a, b ∈ R, then sign(a) = sign(b). Thus,
if |uδ

1| > |u1−uδ
1|, i.e., by (9) and (10), ∥E(A+δE)−1v∥ >

∥E(A−1 − (A+ δE)−1)v∥, then sign(uδ
1) = sign(u1).

For invertible matrices M, N ∈ GL(n), the property
M−1 −N−1 = M−1(N −M)N−1 holds. Taking M = A
and N = (A+δE), we arrive at ∥E(A−1−(A+δE)−1)v∥ =
∥EA−1 ((A+ δE)−A) (A + δE)−1v∥ = δ∥EA−1E(A +
δE)−1v∥. Hence, if we prove δ∥EA−1E(A + δE)−1v∥ <
∥E(A + δE)−1v∥, then we have shown that sign(uδ

1) =
sign(u1). Applying the product inequality for matrices, we
see that since δ∥EA−1E(A+δE)−1v∥ ≤ δ∥EA−1∥∥E(A+
δE)−1v∥ and ∥E(A + δE)−1v∥ = |uδ

1| ̸= 0, it suffices to
show δ∥EA−1∥ < 1.

Clearly ∥E∥ = 1 from (7), thus utilizing the product in-
equality and δ < ∥A−1∥−1 implies sign(uδ

1) = sign(u1). An
analogous set of steps can prove that sign(u−δ

1 ) = sign(u1),
which implies sign(uδ

1) = sign(u−δ
1 ). ■

We now use Lemma 1 as a stepping stone to describe
an intersection of infinitely many ellipsoids BαU whose
matrices Bα differ in a single element by an intersection of
only two ellipsoids. Such a result is proved in the following
lemma; in the context of guaranteed velocity sets, we later
apply it to perturbations of matrix G(0).

Lemma 2. Let A,E, δ, uδ, u−δ, and v be as in Lemma 1.
Then, for every α ∈ [−1, 1], there exists uαδ ∈ Bn(0; 1) so
that

v = (A+ αδE)uαδ. (11)

Proof. Let us denote v =

[
v1
v̂

]
, with v1 ∈ R, and A =[

a Â1

Â

]
, where a ∈ R, Â1 ∈ R1×(n−1), Â ∈ R(n−1)×n.



Let λ ∈ [0, 1]. We set

uαδ = λuδ + (1− λ)u−δ =

[
λuδ

1 + (1− λ)u−δ
1

λûδ + (1− λ) û−δ

]
,

which by convexity, guarantees uαδ ∈ Bm(0; 1). We will
show that there exists λ such that (11) holds.

As v̂ = Âuδ = Âu−δ , v̂ also equals
Â
(
λuδ + (1− λ)u−δ

)
= Âuαδ for any λ. It remains

to prove that there exists λ such that

v1 = (a+αδ)(λuδ
1 + (1− λ)u−δ

1 ) + Â1(λû
δ + (1− λ) ûδ).

(12)
From (8) we arrive at Â1û

δ = v1− (a+ δ)uδ
1 and Â1û

−δ =
v1 − (a − δ)u−δ

1 . Plugging these equalities into (12), we
obtain that it is equivalent to

δλ(α− 1)uδ
1 + δ(1− λ)(α+ 1)u−δ

1 = 0. (13)

If 0 is in the convex hull of (α − 1)uδ
1 and (a + 1)u−δ

1 ,
then there exists λ ∈ [0, 1] that satisfies (13). Given that
α − 1 ≤ 0 and α + 1 ≥ 0, from Lemma 1, sign((α −
1)uδ

1) = −sign((α + 1)u−δ
1 ) or (α − 1)uδ

1 = 0 or (α +
1)u−1

1 = 0. Thus, 0 is indeed in such a convex hull, and
(13) is satisfied. ■

To simplify notation, Lemmas 1 and 2 speak of pertur-
bations of the “top-left element” of A. However, the same
results, with an analogous proof, also obviously hold for any
other single element of A.

We now move to applying Lemmas 1 and 2 to matrices
from the unknown function G.

B. Finite Perturbation Theorem

For Lemmas 1 and 2, we require the perturbation δ <
∥A−1∥−1. We begin with a remark that ∥∆∥max ≤ ∥∆∥ for
all matrices ∆ (see, e.g., [21]). Hence, if ∥∆∥ < ∥A−1∥−1,
all elements of ∆(x) are smaller than ∥A−1∥−1.

The Finite Perturbation Theorem derives a method to
represent an intersection of infinitely many ellipsoids by an
intersection of only finitely many of them. Naturally, we will
later apply it to simplify the computation of VG

x when ∆(x)
is small enough.

Theorem 1 (Finite Perturbation Theorem). Let u ∈ U =
Bn(0; 1), A ∈ GL(n) and let P1, P2, . . . , P2n2 denote all
matrices in Rn×n with either 1 or −1 in every element.
Let ∆ ∈ A(A) satisfy ∥∆∥ < ∥A−1∥−1. We define V =⋂

Â∈C∆(A) ÂU . If we define ∆k = ∆⊙Pk for all k ∈ [2n
2

],
then

V =
⋂

k∈[2n2 ]

(A+∆k)U . (14)

Proof. Let δij denote elements of ∆. By the remark at
the beginning of this section, δij satisfies the conditions of
Lemmas 1 and 2 for all i, j. Let Eij ∈ Rn×n be a matrix
with all zeros, except 1 in element (i, j).

Consider any matrix Â ∈ C∆(A). Then, Â = A +∑
i,j εijEij , where |εij | ≤ δij for all i, j.
By first considering matrices (A+

∑
(i,j)̸=(1,1) εijEij) +

δ11E11 and (A+
∑

(i,j)̸=(1,1) εijEij)−δ11E11 for Lemma 2,

noting that δ11 < ∥A +
∑

(i,j)̸=(1,1) εijEij∥, we ob-
tain that ((A +

∑
(i,j)̸=(1,1) εijEij) + δ11E11)U ∩ ((A +∑

(i,j)̸=(1,1) εijEij) + δ11E11)U ⊆ (A+
∑

i,j εijEij)U for
all ε ∈ [−δ11, δ11].

We now proceed onwards: each of the sets ((A +∑
(i,j)̸=(1,1) εijEij) ± δ11E11)U is, again by Lemma 2, a

superset of ((A+
∑

(i,j)̸=(1,1),(i,j) ̸=(1,2) εijEij)± δ11E11 +
δ12E12)U ∩ ((A+

∑
(i,j) ̸=(1,1),(i,j)̸=(1,2) εijEij)±δ11E11−

δ12E12)U . Continuing onwards, we finally obtain

V ⊆
⋂

k∈[2n2 ]

(A+∆k)U ⊆ ÂU

for every Â ∈ C∆(A), thus proving (14). ■

By applying Theorem 1 to A = G(0) and function ∆ as
defined in Assumption 2, the Finite Perturbation Theorem
states that if ∥∆(x)∥ < ∥G−1(0)∥−1, then

VG
x = f(x) +

⋂
k∈[2n2 ]

(G(0) + ∆k(x))U . (15)

To provide an intuitive understanding of Theorem 1, we
follow with an illustrative example.

Example. Let us consider matrix A =

[
18 0
−6 7

]
and

maximal perturbations ∆ =

[
4.5 0
2.5 4.5

]
; notice that ∥∆∥ <

∥A−1∥−1. Consider Ā =

[
16 0
−5 5.5

]
∈ C∆(A). We will use

Theorem 1 to compute ∩Â∈C∆(A)ÂU .
Let u+−−, u−−− ∈ U . Using the same notation as

Lemma 2, let δ11 = 4.5. By Lemma 2, if

v =

[
13.5 0
−8.5 2.5

]
u+−− =

[
22.5 0
−8.5 2.5

]
u−−−,

then there exists u−− ∈ U such that

v =

[
16 0

−8.5 2.5

]
u−−.

Analogously,

v =

[
13.5 0
−3.5 2.5

]
u++− =

[
22.5 0
−3.5 2.5

]
u−+−

implies that there exists u+− ∈ U such that

v =

[
16 0

−3.5 2.5

]
u+−.

Combining u+− and u−− for Lemma 2, we obtain that there
exists u− ∈ U such that

v =

[
16 0
−5 2.5

]
u−.

The above procedure is shown in Fig. 1; perturbations of
element (1, 2) are skipped as δ12 = 0.

An analogous procedure for vectors u−−+, u+−+,
u−++, u+++ would yield

v =

[
16 0
−5 11.5

]
u+.



13.5

22.5

16

−8.5 −3.5−5 Â(2,1)

Â(1,1)

Fig. 1: The first two steps in the illustration of the Finite
Perturbation Theorem. The elements of the initial matrices
A + ∆k are denoted in blue, the elements of the matrices
obtained after the first step are denoted in red, and those
obtained after two steps in green.

Finally, combining u+ and u− for Lemma 2, we obtain
that there exists u ∈ U such that v = Āu. Fig. 2 illustrates
set ∩Â∈C∆(A)ÂU computed in two ways: with and without
Theorem 1. The notation corresponds to that of the guaran-
teed velocity sets, with G(0) = A, ∆(x) = ∆, and V = VG

x .
The Finite Perturbation Theorem interprets VG

x as an
intersection of just finitely many ellipsoids. However, its
geometry is still nontrivial. Hence, we proceed to develop an
optimal under-approximation of VG

x by exploiting this result.

Fig. 2: Velocity sets in the example. The blue curves repre-
sent the boundaries of the ellipsoids ÂU , i.e., the available
velocity sets for all systems such that Ĝ(x) ∈ C∆(x)(G(0)).
The intersection of these sets produces VG

x (white). The
boundary of VG

x is indeed formed by black curves, corre-
sponding to 2n

2

ellipsoids from Theorem 1. The red curve is
the boundary of the optimal ellipsoidal inner-approximation
of VG

x introduced in Section IV.

IV. MAXIMAL ELLIPSOID

We can express VG
x as a finite intersection of ellipsoids sat-

isfying the assumptions of Theorem 1. We draw on [22] by
exploiting this new representation to solve an optimization
problem that will determine the maximal ellipsoid contained
in VG

x . With this ellipsoid, we can derive a control system
whose reachable set is contained in the GRS.

Theorem 2. Let A and ∆k be as in Theorem 1. Let UΣV T

be the singular value decomposition of A and let Σk =
UT (A+∆k)V and Ak = (Σ−1

k )TΣ−1
k . Let Ek = (A+∆k)U .

Then, an ellipsoid E of maximal volume such that E ⊆
⋂

k Ek
is given by E = UBV TU where B is the solution to

minimize
B∈Sn

++,λ1,...,λ
2n

2 ∈R
log detB−1

subject to

−λk + 1 0 0
0 λkIn B
0 B A−1

k

 ≥ 0

for all k ∈ [2n
2

].

(16)

Proof. By representing Ek via convex quadratic inequalities,
the claim follows directly from Section 8.4.2 in [22]. ■

The next result naturally follows from Theorem 2.

Corollary 1. Let x ∈ Rn. Let B(x) be the solution of (16),
with A = G(0), ∆ = ∆(x). Let UΣV T be the singular
value decomposition of G(0). Then, UB(x)V TU ⊆ VG

x .

We now use the result of Theorem 2 and Corollary 1
to produce a geometrically simple control system whose
reachable set under-approximates the GRS.

Theorem 3. For all x ∈ Rn, let B(x) be the solution of
(16), with A = G(0), ∆ = ∆(x). Let UΣV T be the singular
value decomposition of G(0). Consider the control system

ẋ = f(x) + UB(x)V Tu, x(0) = x0, (17)

where u ∈ U . If we define Ropt(T, x0) as the reachable set
of (17) at time T, then Ropt(T, x0) ⊆ RG(T, x0).

Proof. Proposition 2 and Corollary 1 show that
Ropt(T, x0) ⊆ RG(T, x0). ■

Theorem 3 provides a guaranteed under-approximation of
the true reachable set of a partially known system; another
is provided directly by the remark under Proposition 2. In
the following section, we numerically solve for the under-
approximated reachable sets to illustrate how the theory can
be practically implemented, and introduce a new heuristic
to reduce the computational load of these two methods.

V. NUMERICAL EXAMPLE

We consider a system with dynamics

ẋ =

[
18− x1 0
−6− x2 7− x1

] [
u1

u2

]
.

These dynamics are partially unknown when calculating the
reachable set, and all that is known is

G(0) =

[
18 0
−6 7

]
, ∆(x) =

[
|x1| 0
|x2| |x1|

]
.

Fig. 3 shows three under-approximations of the GRS and
the unknown system’s true reachable set at T = 0.2.

The largest is RVG
x
(0.2, 0) directly calculated as the

reachable set of ẋ ∈ VG
x , with VG

x calculated for every x
using Theorem 1. The second largest set is Ropt(0.2, 0),
i.e., the reachable set computed using Theorem 3.

Finally, we introduce a new reachable set, Rcon(0.2, 0),
obtained by taking ∆(4.5, 2.5), corresponding to the exam-
ple in Section III, and plugging that ∆ at every x to obtain a



Fig. 3: True reachable set (blue) of the example system
with under-approximations RVG

x
(T, 0) (purple), Ropt(T, 0)

(green) and Rcon(T, 0) (red) numerically computed for
T = 0.2 seconds.

state-invariant under-approximation of VG
x using Theorem 3.

We choose such a ∆ based on the additional knowledge that
the system must satisfy |x1(T )| ≤ 4.5 and |x2(T )| ≤ 2.5;
such knowledge might again be obtained from system de-
sign and physics, or computed using Lipschitz bounds to
determine the over-approximated velocity set for every x,
similarly to [1], [23].

All reachable sets are computed numerically through a
Monte Carlo simulation using the ode45 function in MAT-
LAB; throughout all the trajectories, ∆(x) indeed lies in
A(G(0)). We use such a rudimentary method to avoid
technical issues of currently available solvers such as CORA
[24], particularly for computing RVG

x
(0.2, 0) which utilizes a

geometrically nontrivial shape of the velocity set that cannot
easily be processed using such solvers.

While Rcon(0.2, 0), Ropt(0.2, 0), and RVG
x
(0.2, 0) are

increasingly better approximations of the system’s true
reachable set, the price paid is one of increased computa-
tional complexity. Namely, while the key to our work is
our description of VG

x as an intersection of finitely many
ellipses, the calculation of RVG

x
(0.2, 0) is still infeasible in

real time because VG
x is difficult to describe in a simple

form. Thus, Ropt(0.2, 0) uses simple ellipsoids as velocity
sets, but requires solving a different optimization problem
at every state. While Ropt(0.2, 0) can be computed with a
lower runtime, the computation of either set takes hours. In
contrast, calculating Rcon(0.2, 0) requires solving only one
optimization problem in seconds, resulting in a smaller set
that is feasible for real-time computation.

VI. CONCLUSION

This paper considers the problem of under-approximating
the reachable set of a system with partially unknown dy-
namics. The theory centers around the Finite Perturbation
Theorem, which takes advantage of knowledge of the ef-
fect of the system’s actuators to represent the system’s
guaranteed available velocities as an intersection of finitely
many ellipsoids. We further use this result to develop a
semi-definite program that finds a maximal ellipsoid of
provably attainable velocities. While these methods appear to
provide faithful approximations, an additional simplification

of the semi-definite program yields significantly faster under-
approximations, at some expense of quality. A natural next
step is to incorporate uncertainties in the unforced dynamics
f and to consider cases with underactuated systems.
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