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Abstract— This paper is concerned with identifying linear
system dynamics without the knowledge of individual system
trajectories, but from the knowledge of the system’s reachable
sets observed at different times. Motivated by a scenario
where the reachable sets are known from partially transparent
manufacturer specifications or observations of the collective
behavior of adversarial agents, we aim to utilize such sets
to determine the unknown system’s dynamics. The paper has
two contributions. Firstly, we show that the sequence of the
system’s reachable sets can be used to uniquely determine
the system’s dynamics for asymmetric input sets under some
generic assumptions, regardless of the system’s dimensions.
We also prove the same property holds up to a sign change
for two-dimensional systems where the input set is symmetric
around zero. Secondly, we present an algorithm to determine
the system’s dynamics. We apply and verify the developed
theory and algorithms on an unknown band-pass filter circuit
solely provided the unknown system’s reachable sets over a
finite observation period.

I. INTRODUCTION

This paper aims to determine whether it is possible to
use a control system’s reachable sets obtained at different
time instances to calculate the system’s dynamics. In certain
instances, we may be able to determine an approximation of
a system’s reachable sets over a finite observation period.
The purpose of this paper is to show that such informa-
tion can be utilized to arrive at a dynamic model for an
unknown system. Practical applications may include system
identification of high-density drone and missile swarms [1],
[2] where the reachable set can be found by observing
multiple agents collectively, but without the capability of
distinguishing them. Other applications include predicting
macro-level population behaviors, e.g., determining how
crowd behavior changes under social or economic events
like the introduction of a new population or changes in
the stock market [3]. We may also be able to model
internal body functions on the cellular level [4], namely
understanding how cells change their identity and behavior
in living systems. We first show that reachable sets — under
some technical assumptions — will uniquely determine
an unknown system’s true dynamics. After uniqueness is
proven, we develop a method to identify a linear model of
an unknown system’s behavior using its reachable sets.

Previous research in system identification presents the
most closely related contributions to the method presented in
this paper. However, previous work on system identification
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classically relies on frequency response techniques induced
by randomized actuator inputs [5], [6]. More sophisticated
system identification techniques involve neural networks [7].
Single-layer and multi-layer neural networks have also been
applied with the use of parameter estimation algorithms us-
ing a single hidden layer [8] and H∞ control-induced exci-
tations for robust identification of system nonlinearities [9].
More recent work involves using recurrent neural networks
[10], [11] with Long Short-Term Memory Units (LSTM)
and fractional order neural networks (FONN) [12], [13]
to identify and control dynamic systems. These methods,
however, cannot be used unless one has access to a system’s
actuators or individual trajectories. The significant difference
of our novel method is that it does not require control of
any actuators to model an unknown system nor observations
of individual trajectories.

On a high level, the problem in this paper involves
identifying the behaviors or capabilities of an observed
system under limited information. While there exist other
methods for adversarial behavior recognition, those works
are focused on determining adversarial agent goals by
matching actions of an agent against a plan library [14]–
[16]. More recent work [17], [18] proposes using evolv-
ing fuzzy systems and artificial intelligence to adaptively
predict agent behavior. In contrast, our method is starkly
different since it is not primarily concerned with predicting
adversarial behavior, but determining all possible actions of
an adversary within a time horizon. Thus, instead of using
a library of finite predetermined adversarial actions, our
method uses reachable sets to produce a dynamic model
of an unknown system.

A. Notation

We denote the set of all n×m real and complex matrices
by Rn×m and Cn×m respectively; for M ∈ Rn×m, we let
MT ∈ Rm×n denote its transpose. Vectors e1, . . . , en will
denote the canonical basis vectors in Rn. We let N denote
the set of all natural numbers, Z≥0 denote the set of non-
negative integers, and GL(n) denote the set of invertible
square matrices of dimension n ∈ N. Let S be a set of
points in Rn. Then Conv(S) denotes the convex hull of S .
Notation BX where B ∈ Rn×m and X ⊂ Rm denotes the
set BX = {Bx | x ∈ X}. Given two sets A, B ∈ Rn, we
denote A⊕B = {a+ b | a ∈ A, b ∈ B} as their Minkowski
sum. Similarly, A⊖B = {c ∈ Rn | c⊕B ⊆ A} denotes the
Minkowski difference. We also define A+ b = {a+ b | a ∈
Rn} as the translation of A by b ∈ Rn.



II. PROBLEM STATEMENT

We consider the discrete-time, single-input linear system

x[i+ 1] = Ax[i] + bu[i], x[0] = 0, (1)

where all i ∈ Z≥0, x ∈ Rn, A ∈ Rn×n, b ∈ Rn and
u ∈ U ⊂ R where U = [u, u] such that u ̸= u. We assume
b ̸= 0 since the system’s reachable sets are trivial otherwise.
We also assume x[0] = 0; by a shift in coordinates, the
case of x[0] ̸= 0 is equivalent to that of an affine system
x[i+ 1] = Ax[i] + bu[i] + c with initial state at the origin.
Solving the problem in this setting can likely be approached
by reproducing similar calculations in subsequent sections,
but we leave such an effort for future work.

Our goal is to establish whether the dynamics of (1), i.e.,
matrices A and b, can be determined using the system’s
reachable sets. We now formally define said reachable sets.

Definition 1: For i ∈ Z≥0, the (forward) reachable set of
system (1) at time i is

R(i, x[0]) = {ϕu(i;x[0]) | u : Z≥0 → U},

where ϕu(·;x[0]) denotes the controlled trajectory of system
(1) with control signal u.

We present the problem of whether the system dynamics
are uniquely determined by the system’s reachable sets.

Problem 1: Given a sequence of sets {R(i, 0)}i∈N which
is generated by (1) for some (A, b), determine whether
(A, b) can be uniquely recovered from {R(i, 0)}i∈N.

Notice that we explicitly assume the knowledge of all
reachable sets at all times. Such an assumption might not
always be realistic. We will show that we often need only the
first n+1 reachable sets to uniquely recover the dynamics.
We leave the more general case — where reachable sets at
only some time steps are available — for future work.

The first step to solving Problem 1 is to derive a simple
relationship between the system matrices and R(i, 0). Given
system (1), we naturally utilize Minkowski sums and the
Minkowski difference [19] to produce such a relationship
for all i ∈ N.

Theorem 1: Let R(i, 0) be the reachable set at time i of
(1). Then

Ai−1bU = R(i, 0)⊖R(i− 1, 0). (2)
Proof: By (1) it is clear that R(1, 0) = bU . Since

x[i] = Aix[0] +Ai−1bu[0] + . . .+ bu[i− 1],

clearly
R(i, 0) = Ai−1bU ⊕R(i− 1, 0).

We recall that the Minkowski sum of two convex sets is
also convex [20]. Since all sets Ai−1bU are convex by the
definition of U , all sets R(i, 0) are convex by induction.
Hence, the appropriate Minkowski difference [21] can be
calculated to arrive at (2).

Theorem 1 implies that we can obtain {Ai−1bU}i∈N
using the reachable sets R(i, 0). We will prove that when
U ̸= [−c, c] with c ∈ R, matrices A and b are indeed

generically uniquely defined from {Ai−1bU}i∈N, that is,
uniquely defined under the assumptions formally written in
Theorem 2 shown to be generic in a topological sense in
Lemma 1. When U = [−c, c] for some c ∈ R, we can
show that (A, b) are not uniquely defined, but conjecture
that they are unique up to a change in sign. We prove that
this property holds for n = 2. We shall refer to solutions
for cases with such a set U as ±-unique, which is explicitly
defined in the next section.

Following Problem 1, which seeks to determine whether
system dynamics are uniquely defined from reachable sets,
we present the second problem, which aims to explicitly
determine such dynamics.

Problem 2: Develop a method to recover at least one pair
(A, b) which generates {R(i, 0)}i∈N.

Based on methods in [19] for calculating Minkowski
differences, we can calculate {Ai−1bU}i∈N. We show in
Section IV that the results of these Minkowski differ-
ences and knowledge of U are sufficient for calculating
{Ai−1b}i∈N, which in turn can be utilized to calculate the
matrix pair (A, b) for controllable systems. We first tackle
Problem 1.

III. UNIQUENESS OF THE DERIVED SYSTEM MODEL

We wish to determine when a pair (A, b) is uniquely
defined by the reachable sets of (1). It can be easily shown
that the answer is generally negative. Consider an unknown
system (1) where A = I and b =

[
0 1

]T
. Consider another

system where the top left element of A equals 0; call this
matrix A′. By equation (2) of Theorem 1, the reachable
sets of (1) with matrix pairs (A, b) and (A′, b) are the
same. Thus, we begin by determining sufficient conditions
which guarantee whether (A, b) can be uniquely recovered
as stated in Problem 1. We will show uniqueness under
several technical assumptions; Lemma 1 shows that these
assumptions are generic in a topological sense. Its proof is
available in this paper’s extended version1.

Lemma 1: Let N ⊂ Rn×n be the set of all matrices such
that if A ∈ N , then A2 has all distinct eigenvalues. Let
b ∈ Rn\{0} and O ∈ Rn×n be the set of all matrices such
that, if A ∈ O and η ∈ Cn is any left eigenvector of A,
bT η ̸= 0. Then, GL(n) ∩N ∩O is an open and dense set.

We emphasize that many well-known linear controllable
systems, such as the discrete double integrator, RLC circuit,
and linearized pendulum [22], contain A matrices which
satisfy the conditions of Lemma 1. Also, these generic
assumptions are not necessary, but sufficient to guarantee
uniqueness. In the proof below, we will use the assumptions
in Lemma 1 to prove that the dynamics derived from reach-
able sets are generically unique, at least for an asymmetric
input set.

Theorem 2: Let U = [c, d], where c ̸= ±d. Let ηi ∈ Cn

for i ∈ {1, . . . , n} be the left eigenvectors of A. Let
the sequence {R(j, 0)}j∈N be generated by system (1) for
system matrices (A, b) and (A′, b′), where A, A′ ∈ GL(n),

1https://arxiv.org/abs/2309.04340



A and A′ have n distinct eigenvalues, and bT ηi ̸= 0 for all
i. Then, (A, b) = (A′, b′).

Proof: If (A, b) and (A′, b′) for system (1) produce an
identical sequence {R(j, 0)}j∈N, then R(1, 0) = bU = b′U ,
i.e., there are two options: (i) bc = b′c and bd = b′d or
(ii) bc = b′d and bd = b′c. If the latter option is true, then
bcd = b′d2 = b′c2, so b′ = 0. In that case, b = 0, so b = b′.
If the former option is true, because at least one of c or d
is non-zero, again b = b′.

Let us now perform a coordinate transformation z = Mx,
where M is chosen so that Mb = e1. Such an M exists since
b ̸= 0. Then, ż = MAx+Mbu = MAM−1z + e1u. If we
define Â = MAM−1, by our assumptions Â is invertible
and Â has distinct eigenvalues. Additionally, it is trivially
verified that left eigenvectors of Â are (M−1)T ηi. Since
M−1e1 = b, the assumption bT ηi ̸= 0 is equivalent to the
first element of the left eigenvectors of Â being non-zero.
To simplify the notation, by a standard abuse of notation
we now let (A, e1), (A′, e1) denote the system matrices
after performing the above transformation. By the above
discussion, we are assuming that A and A′ are invertible,
have distinct eigenvalues, and that ηi1 ̸= 0 for all i.

Noting that the two systems produce the same reachable
sets, by (2) it follows that Ake1 = A′ke1 for all k ∈ N.
By the same logic as in the first paragraph of the proof, we
see that since c ̸= −d, then Akce1 = A′kce1 and Akde1 =
A′kde1 is satisfied for all k ∈ N, giving us the relation

Ake1 = A′ke1 ∀ k ∈ Z≥0. (3)

Equation (3) implies Ak−1A′e1 = A′k−1Ae1 and
A′k−2Ae1 = Ak−1e1 for all k ≥ 2. We have

Ak−1A′e1 = A′k−1Ae1 = A′A′k−2Ae1 = A′Ak−1e1.

Hence, Ak−1A′e1 = A′Ak−1e1; since A′ is invertible,

Ake1 = A′(−1)AkA′e1 ∀ k ∈ Z≥0. (4)

Let vi denote the right eigenvectors of A and v′i, η
′
i

denote the right and left eigenvectors of A′(−1)AA′ re-
spectively. Since A and A′(−1)AA′ are similar matrices,
their eigenvalues are equal [23]. Let A = V DV −1 and
A′(−1)AA′ = V ′DV ′(−1) where the rows of V −1 and V ′−1

are ηTi and η′Ti respectively and the columns of V and V ′

are vi and v′i respectively. By our assumptions, ηi1 ̸= 0, so
we can now scale the η’s so that ηi1 = 1. We then redefine vi
to be the newly scaled right eigenvectors such that ηi1 = 1.
Next, we write (4) in tensor notation [23] and subtract the
right hand side from both sides to get

∑
i

λk
i (vi − v′iη

′T
i1 ) = 0 ∀ k ∈ Z≥0. (5)

Taking k ∈ {0, . . . , n−1} we have a series of n equations.

For the j-th element of any vi and v′i, we have

ΛSj =


1 . . . 1
λ1 . . . λn

...
...

...
λn−1
1 . . . λn−1

n



v1j − v′1jη

′T
11

v2j − v′2jη
′T
21

...
vnj − v′njη

′T
n1

 =


0
0
...
0


for any j ∈ {1, . . . , n}. Notice that Λ ∈ Cn×n is the square
Vandermonde matrix [24]. Recall that the Vandermonde
matrix is invertible if elements λi are distinct for all i, which
holds by assumption. If η′i1 = 0 for any i, then vi = 0,
which contradicts the assumption that A is diagonalizable.
Consequently, η′i1 ̸= 0 for all i, so similar to the previous
step, we can scale v′i and η′i1 such that η′i1 = 1 for all i.
It follows that vij = v′ij for all i, j since Λ is invertible.
Therefore, A = A′(−1)AA′.

Recall that we assumed that all eigenvalues of A are
distinct. Thus, since A and A′ commute, we can conclude
that A and A′ have the same eigenvectors [25]. Recall that
A and A′ are both diagonalizable. If we take the eigenvalue
expansion of A and A′ and multiply both on the left by
V −1, then subtracting the right hand side from both sides
of equation (3) implies

(λk
i − λ′k

i )ηi1 = 0 ∀ k ∈ N.

By assumption, ηi1 ̸= 0 for all i, so λk
i = λ′k

i for all k ∈ N.
Therefore, both A and A′ have the same eigenvectors and
eigenvalues, hence A = A′.

Theorem 2 proves that given reachable sets of generic
system (1), the pair (A, b) is uniquely defined when the set
of control inputs is not symmetric around 0. We now want
to address the degenerate case where U = [−c, c]. It can be
easily seen that in such a case, system (1) with (A, b) and
(−A,−b) will produce the same reachable sets. To discuss
a relaxed notion of system uniqueness, we provide a formal
definition of ±-uniqueness.

Definition 2: The system dynamics (A, b) of (1) are
±-unique if (A, b) and −(A, b) generate the same reachable
sets, but there do not exist other pairs (A′, b′) which generate
the same reachable sets.

We conjecture that in the case when U is symmetric
around 0 – a scenario common in many controls applications
[26] – the dynamics are ±-unique.

Conjecture 1: Let U = [−c, c]. Let the sequence
{R(i, 0)}i∈N be generated by (A, b), where A2 has distinct
eigenvalues and (A, b) are known to satisfy the assumptions
of Theorem 2. Then, (A, b) is ±-unique.

Proving the conjecture above requires extensive theo-
retical developments and remains for future work. As an
illustration, we formally prove the conjecture to be true in
the two-dimensional case.

Theorem 3: Let n = 2. Then, Conjecture 1 is correct.
Proof: Similarly to the proof of Theorem 2, we have

two options: bc = b′c or bc = −b′c. In the former case, we
reach the same result as before, namely b = b′. In the latter
case, we obtain b = −b′. Altogether, we get b = (−1)p(0)b′

where p(0) ∈ {0, 1}.



As in Theorem 2, through a coordinate transformation
we assume without loss of generality that b′ = e1. Then
bU = (−1)p(0)b′U = (−1)p(0)[−c, c]e1. Following the same
steps as in the beginning of the proof in Theorem 2, with
a standard abuse of notation, we let A, A′ represent the
system dynamics in this new basis where A and A′ satisfy
our assumptions. Also, we find that if U = [−c, c], then we
arrive at the relation

Ake1 = (−1)p(k)A′ke1 ∀ k ∈ Z≥0. (6)

When k = 2, we see that regardless of p(1), AA′e1 =
(−1)p(2)A′Ae1. Using this fact along with equation (6)
implies Ak−1A′e1 = (−1)p(k)A′k−1Ae1 for all k ≥ 1 and
Ak−2A′e1 = (−1)p(k−1)A′k−2Ae1 for all k ≥ 2. We have

(−1)p(k)A′k−1Ae1 = (−1)p(k)A′A′k−2Ae1

= (−1)p(k)(−1)p(k−1)(−1)p(1)A′Ak−1e1.

Hence, Ak−1A′e1 = (−1)p(k)(−1)p(k−1)(−1)p(1)A′Ak−1e1;
since A′ is invertible,

Ak−1e1 =
A′(−1)Ak−1A′e1

(−1)p(k)(−1)p(k−1)(−1)p(1)
.

We define q(k) ∈ {0, 1} as follows:
(−1)q(k) = ((−1)p(k)(−1)p(k−1)(−1)p(1))−1 =
(−1)p(k)(−1)p(k−1)(−1)p(1). We then have

Ak−1e1 = (−1)q(k)A′(−1)Ak−1A′e1 ∀ k ∈ N.

It holds that Ak−1 and A′(−1)Ak−1A′ have the same eigen-
values, so Ak−1 and −A′(−1)Ak−1A′ must have eigenvalues
of opposite sign. That is, if λi and λ′

i are the eigenvalues of
A and ±A′(−1)AA′ respectively, then λi = ±λ′

i. Following
the same steps as in the proof of Theorem 2 we get

∑
i

λk−1
i (vi − (−1)q(k)v′iη

′T
i1 ) = 0 ∀ k ∈ N. (7)

We now show that if (A,B) ∈ (R2×2,R2), then equation
(7) implies A = ±A′(−1)AA′. Recall that q(k) ∈ {0, 1}
and so (q(1), q(2)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. When
(q(1), q(2)) = (0, 0), equation (7) is the same as equation
(5) for k = 1 and k = 2. If we write these equations in ma-
trix form as in Theorem 2 we again have the Vandermonde
matrix on the left-hand side. Following the same steps as
Theorem 2, we see that vi = v′i for all i. Since λi = ±λ′

i,
then A = ±A′(−1)AA′. Similarly, if (q(1), q(2)) = (1, 1),
if we follow the same procedure to find A = ±A′(−1)AA′.

The most interesting cases are when (q(1), q(2)) ∈
{(0, 1), (1, 0)}. Let us first consider (q(1), q(2)) = (1, 0).
Recall q(k) ∈ {0, 1}, so if q(3) = 0, then (q(2), q(3)) =
(0, 0). If (q(k), q(k+1)) = (0, 0) for some k, we then have

ΛSj =

[
λk
1 λk

2

λk+1
1 λk+1

2

] [
v1j − v′1jη

′T
11

v2j − v′2jη
′T
21

]
=

[
0
0

]
. (8)

We note
det(Λ) = λk

1λ
k
2

∣∣∣∣ 1 1
λ1 λ2

∣∣∣∣ ̸= 0

since we have two non-zero scalars multiplied by the
non-zero Vandermonde determinant in the case of distinct
eigenvalues. Hence, Λ as defined in (8) is invertible and we
again conclude that A = ±A′(−1)AA′.

We lastly consider cases where q(k) is alternating, namely
{q(k)}3k=1 = (0, 1, 0) and {q(k)}3k=1 = (1, 0, 1). In the
former case, we have

ΛSj =

[
1 1
λ2
1 λ2

2

] [
v1j − v′1jη

′T
11

v2j − v′2jη
′T
21

]
=

[
0
0

]
.

The generic assumption that all eigenvalues are distinct
modulo a sign implies that Λ is invertible, thus we again
find vi = v′i and thus A = ±A′(−1)AA′. By following
the same steps, we arrive at the same conclusion when
{q(k)}3k=1 = (1, 0, 1).

We now have that A = (−1)q(2)A′(−1)AA′. If q(2) = 0,
then A and A′ commute. Using assumptions of the theorem
statement, we can conclude that A and A′ have the same
eigenvectors [25]. If q(2) = 1, then A = −A′(−1)AA′ and
so A2 = A′(−1)A2A′. Clearly, A2 and A′ commute, and by
the theorem statement, A2 has distinct eigenvalues, which
again implies that A and A′ share the same eigenvectors.

We now follow the same steps as in the latter part of
the proof of Theorem 2. Namely, we can diagonalize A
and A′; taking the eigenvalue expansion of equation (6)
and multiplying both sides on the left by the matrix of left
eigenvectors gives us the series of equations

λk−1
i = (−1)q(k)λ′k−1

i ∀ k ∈ N.

Since q(2) = 0 or q(2) = 1, then λi = λ′
i or λi = −λ′

i for
all i. Since both A and A′ have the same eigenvectors and
eigenvalues same to a sign, then A = ±A′.

Theorem 2 solves Problem 1 in the generic case where
U ̸= [−c, c] while Theorem 3 proves there exists a ±-unique
solution to Problem 1 in the two-dimensional case where
U = [−c, c]. The proof of Theorem 3 drives our intuition
for Conjecture 1 in general: adding dimensions to the system
should not make it more likely that multiple generic systems
can produce the same reachable sets for all time, especially
considering no two such systems exist when the input set
is asymmetric. Formalizing this statement is left for future
work.

IV. SOLVING FOR THE SYSTEM DYNAMICS

We ultimately want to use reachable sets to solve for the
system dynamics. Equation (2) of Theorem 1 already gives
us a formula for calculating Ai−1bU for all i ∈ N, namely

Ai−1bU = R(i, 0)⊖R(i− 1, 0).

In Theorem 2, we proved that the answer to Problem 1 is
affirmative for generic, single-input linear systems, meaning
that for cases where the linear system dynamics satisfy
the generic assumptions of Lemma 1, we can uniquely
determine the true dynamics from the system’s reachable
sets.

We will determine (A, b) from reachable sets through
a two step procedure. First, we calculate Ai−1bU for



i = {1, . . . , n + 1}. In the case where U ≠ [−c, c], the
sequence of sets Ai−1bU can be used to calculate (A, b)
directly. If U = [−c, c], these same sets can be utilized
to compute a number of candidate dynamics (A, b) which
satisfy R(i, 0) for all i. To determine which candidate
solutions are correct, we compute the forward reachable sets
of (1) using all candidate (A, b). By Theorem 3, in the two-
dimensional case, only two solutions (A, b) and (A′, b′) such
that (A, b) = −(A′, b′) will satisfy R(i, 0) for all i.

We begin our method by first using an algorithm that takes
reachable sets of (1) and solves for Ai−1bU . By equation
(2), we can utilize existing methods [19], [21], [27] to
compute the Minkowski difference between two polygons
to calculate Ai−1bU given R(i, 0) for all i ∈ N. For this
narrative, we adopt the method in [19]. By Lemma 1 of
[19], if we let v(i) ∈ V be the vertices of R(i − 1, 0),
then the Minkowski difference R(i, 0) ⊖ R(i − 1, 0) may
be computed by taking the intersection of the translation of
the set R(i, 0) by vertices v(i) ∈ V of R(i− 1, 0):

R(i, 0)⊖R(i− 1, 0) =
⋂

v(i)∈V

(R(i, 0)− v(i)). (9)

While computing the intersection in (9) is generally compu-
tationally difficult, calculations are made significantly easier
as Ai−1bU is a line segment; see [19] for details.

We now move to recover Ai−1b from Ai−1bU . We
consider two cases: U = [c, d] for d ̸= −c and U = [−c, c]
for some c ∈ R. In the former case, taking the mean of the
vertices of Ai−1bU will provide Ai−1b c+d

2 . Multiplying this
vector by 2

c+d recovers Ai−1b, allowing us to identify A by
the following theorem.

Theorem 4: Let us assume the n-dimensional system (1)
is controllable. Let CA,b =

[
b Ab . . . An−1b

]
. For the

single-input case, A = ACA,bC
−1
A,b.

The proof of Theorem 4 is trivial, noting that CA,b is full
rank for controllable systems. We note that the assumption
of controllability is generic [26].

In the case where U = [−c, c], by multiplying the vertices
of Ai−1bU by c, we can only recover Ai−1b up to a
sign, generating two candidates for each i. Substituting all
possible candidates for Ai−1b into the columns of CA,b and
ACA,b generates 2n+1 candidate matrices A.

To determine which candidate solutions yield the correct
±-unique matrix pair (A, b), we can compute the reachable
sets of all 2n+1 candidate solutions to solve for the desired
unknown ±-unique system dynamics. In the next section, we
use the CORA toolkit [28] and adopt methods of computing
the Minkowski difference detailed in [19] to numerically
calculate the dynamics (A, b) for an unknown band-pass
filter circuit system and a two-dimensional unknown system
with U = [−1, 1], validating the developed theory.

V. NUMERICAL EXAMPLE

To validate the developed theory and demonstrate how
to apply the proposed method, we first consider a scenario
of reverse engineering an electric circuit from manufacturer

specifications. At times, manufacturers will only release
partial information about a system. For example, instead
of providing a dynamic model of a manufactured part,
manufacturers might convey the set of all voltages a circuit
may output within a set amount of time given the set
of all viable input frequencies. Such information can be
interpreted as the minimum time in which a state can be
reached, providing a picture of the system’s reachable sets.
Motivated by such an example, in this section we provide
an example of identifying the matrices (A, b) of a band-pass
filter circuit from its reachable sets. This example utilizes the
CORA toolkit [28] for set computations, namely to calculate
convex hulls and Minkowski differences.

A. Band-Pass Filter Circuit

We present the linear dynamic model of a band-pass
filter circuit [29]. Let us assume x[0] = 0. The state-space
controllable canonical representation [26] of this circuit is

x[j + 1] = Ax[j] + bvc[j]

=


0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3

x[j] +


0
0
0
1

 vc[j]
(10)

such that vc[j] ∈ [0, 1] for all j ∈ Z≥0.
Assume the reachable sets {R(j + 1, 0)}∞j=0 of the

controllable dynamical system (10) are known. From con-
trollability, we know the form of system (10), but not
parameters a0, a1, a2, a3. From this information, we want
to recover the true parameters, which we set to a0 = 3,
a1 = 2, a2 = 3, and a3 = 6. It can be easily shown
that if a0 ̸= 0, the assumptions of Theorem 2 are satisfied.
Clearly, a matrix M for which Mb = e1 is a simple row
permutation; the assumptions of Theorem 2 are invariant
under permutations, hence all assumptions are satisfied
and the results of Theorem 2 apply when solving for the
matrix pair (A, b). That is, there exists a unique matrix pair
which satisfies {R(j + 1, 0)}∞j=0. Since the system is four-
dimensional, Theorem 4 shows we need only consider the
sets {R(j + 1, 0)}4j=0 to calculate (A, b).

Assume that {R(j + 1, 0)}4j=0 are known to equal

conv


000
0

 ,

000
1


 , conv


 0

0
1
−5

 ,

 0
0
1
−6

 ,

000
0

 ,

000
1


 ,

conv


 0

0.86
−6.02
33.00

 ,

 0
−0.14
0.98
−6.00

 ,

 0
−0.14
0.98
−5.00

 ,

 0
0.86
−6.02
34.00


 ,

conv


−0.15

1.05
−5.99
33.00

 ,

 0.85
−5.95
34.01
−188

 ,

 0.85
−5.95
34.01
−187

 ,

−0.15
1.05
−5.99
34.00


 , and

conv


 −5.93

33.88
−188.02
1035.00

 ,

 1.07
−6.12
33.98

−188.00

 ,

 1.07
−6.12
33.98

−187.00

 ,

 −5.93
33.88

−188.02
1036.00


 ,



respectively. Based on Theorem 2, the knowledge of only
these five sets is sufficient to reconstruct the true values of
parameters a0, a1, a2, and a3.

Since R(1, 0) = bU and U = [0, 1], b can be triv-
ially computed to equal b =

[
0 0 0 1

]T
. Using (2)

where U = [0, 1] we have Ab =
[
0 0 1 −6

]T
,

A2b =
[
0 1 −6 33

]T
, A3b =

[
1 −6 33 −182

]T
,

A4b =
[
−6 33 −182 1002

]T
. Recall we assume

the system is controllable, and thus the controllabil-
ity matrix CA,b is invertible. Finally, by Theorem 4,
A =

[
A4b A3b A2b Ab

] [
A3b A2b Ab b

]−1

which produces the correct matrix A, accurately reconstruct-
ing the parameters a0 = 3, a1 = 2, a2 = 3, and a3 = 6.

VI. CONCLUSION

This paper considers the problem of determining the
dynamics of an unknown discrete-time linear system using
its reachable sets. The theory developed in this paper proves
that for input sets that are asymmetric around the origin, the
derived system dynamics are, given some generic technical
assumptions, unique. Thus, in such cases, we can determine
the true dynamics of an unknown system using the sequence
of the system’s reachable sets. For the case where the input
set is symmetric, we prove that the derived dynamics are
unique up to a factor of ±1 for two-dimensional systems and
provide a conjecture that asserts the same result holds for
n-dimensional systems. We develop a method for deriving
the dynamics of a system given the sequence of the system’s
reachable sets using Minkowski differences and proceed to
illustrate by example how the method can be applied to
identify the unknown linear model of a band-pass filter.

A natural next step is to prove the stated conjecture to
show ±-uniqueness for n-dimensional systems. Also, our
current technical assumptions are consistent with generic
properties of matrices, but ideally we want to relax these
assumptions to identify necessary conditions for uniqueness.
We also want to consider cases when the state’s initial con-
ditions are non-zero, when there is only available knowledge
of the system’s reachable sets at non-consecutive time steps,
and also when working with the more general framework of
multi-input systems.
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“Game-theoretic approach to adversarial plan recognition,” in Euro-
pean Conference on Artificial Intelligence, 2012, pp. 546–551.

[16] N. Le Guillarme, A.-I. Mouaddib, X. Lerouvreur, and S. Gatepaille,
“A generative game-theoretic framework for adversarial plan recogni-
tion,” in 10es Journées Francophones sur la Planification, la Décision
et l’Apprentissage, 2015.

[17] J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Evolving
classification of agents’ behaviors: a general approach,” Evolving
Systems, vol. 1, no. 3, pp. 161–171, 2010.

[18] J. Zhang, M. Z. A. Bhuiyan, X. Yang, T. Wang, X. Xu, T. Hayajneh,
and F. Khan, “Anticoncealer: reliable detection of adversary concealed
behaviors in EdgeAI Assisted IoT,” IEEE Internet of Things Journal,
2021.

[19] M. Althoff, “On computing the Minkowski difference of zonotopes,”
arXiv preprint arXiv:1512.02794, 2015.
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